

PERIYAR UNIVERSITY

NAAC 'A++' Grade - State University - NIRF Rank 56–State Public University Rank 25

SALEM - 636 011, Tamil Nadu, India.

CENTRE FOR DISTANCE AND ONLINE EDUCATION

(CDOE)

M.Sc. MATHEMATICS

SEMESTER - I

ELECTIVE COURSE: DISCRETE MATHEMATICS

(Candidates admitted from 2024 onwards)

PERIYAR UNIVERSITY

CENTRE FOR DISTANCE AND ONLINE EDUCATION (CDOE)

M.Sc. Mathematics - 2024 admission onwards

ELECTIVE – 2

Discrete Mathematics

Prepared by:

Centre for Distance and Online Education (CDOE)

Periyar University

Salem -636011

ELECTIVE - II - SYLLABUS
GROUP – B

Discrete Mathematics

OBJECTIVE: The objective of this course is to understand the basic ideas of logic,
proof methods and strategy, the growth of functions, counting techniques, pigeonhole
principle, recurrence relations, solving recurrences using generating functions,
Boolean functions, apply Boolean algebra to circuits and gatting networks, use finite
state-machines to model computer operations.

UNITI: The Foundation of Logic

Logic – Propositional equivalence – Predicates and quantifiers – Proof Methods

and Strategy – The growth of functions.

UNITII: Counting

Basics of counting – The pigeonhole principle – permutations and

combinations –Generalized permutations and combinations – Generating

permutations and combinations.

UNITIII: Advanced counting techniques

Recurrence relation – Solving recurrence relations – Generating functions.

UNITIV: Boolean Algebra

Boolean functions – Representing Boolean functions – Logic Gates –

Minimization of circuits.

UNITV: Modeling Computations

Finite – state machines with output, finite – State machines with no output

– Turing machines

TEXTBOOK:

1. Kenneth H. Rosen, “Discrete Mathematics and its Applications”, 7th

Edition, WCB/ McGraw Hill Publications, New Delhi, 2011.

BOOKS FOR SUPPLEMENTAR YREADING AND REFERENCES:

1. Edward A. Bender and S. Gill Williamson, “A Short Course in

Discrete Mathematics”, Dover Publications, 2006.

2. M.O. Albertson and J.P. Hutchinson, “Discrete Mathematics with

Algorithms”, John Wiley & Sons, 2008.

3. Rajendra Akerkar and Rupali Akarkar, “Discrete Mathematics”,

Pearson Education Pvt. Ltd, Singapore,2004.

4. J.P. Trembley and R. Manohar, “Discrete Mathematical

Structures”, Tata McGraw Hill, New Delhi,1997.

5. Martin Aigner, “A Course in Enumeration”, Springer-Verlag,

Heidelberg, 2007.

6. J.H. Van Lint and R.M. Wilson, “A Course in Combinatorics”,

2nd Edition, Cambridge University Press, Cambridge, 2001.

Contents

1 Logic, Proofs and Algorithms 7

1.1 Propositional Logic . 7

1.1.1 Introduction . 7

1.1.2 Propositions 8

1.1.3 Conditional Statements 14

1.1.4 Truth Tables of Compound Propositions 18

1.1.5 Precedence of Logical Operators 19

1.1.6 Logic and Bit Operations 19

1.2 Applications of Propositional Logic 22

1.2.1 Introduction . 22

1.2.2 Translating English Sentences 23

1.2.3 System Specifications 24

1.2.4 Boolean Searches 25

1.2.5 Logic Circuits 27

1.3 Propositional Equivalences 30

1.3.1 Logical Equivalences 30

1.3.2 Using De Morgans Laws 32

1.3.3 Constructing New Logical Equivalences 34

1.3.4 Satisfiability 36

1.4 Predicates and Quantifiers 39

1

2 CONTENTS

1.4.1 Predicates . 39

1.4.2 Quantifiers . 42

1.4.3 Quantifiers Over Finite Domains 45

1.4.4 Quantifiers with Restricted Domains 45

1.4.5 Precedence of Quantifiers 46

1.4.6 Negating Quantified Expressions 47

1.5 Proof Methods and Strategy 49

1.5.1 Exhaustive Proof and Proof by Cases 49

1.5.2 Uniqueness Proofs 53

1.5.3 Proof Strategies 54

1.5.4 Looking for Counterexamples 56

1.6 The Growth of Functions 58

1.6.1 Big-O Notation 58

1.6.2 Big-O Estimates for Some Important Functions . 61

1.6.3 Big-Omega and Big-Theta Notation 64

2 Counting 71

2.1 The Basics of Counting 71

2.1.1 Basic Counting Principles 71

2.1.2 The Subtraction Rule (Inclusion-Exclusion for

Two Sets) . 78

2.1.3 The Division Rule 80

2.2 The Pigeonhole Principle 84

2.2.1 Introduction 84

2.2.2 The Generalized Pigeonhole Principle 85

2.2.3 Some Elegant Applications of the Pigeonhole Prin-

ciple . 86

2.3 Permutations and Combinations 90

CONTENTS 3

2.3.1 Permutations 90

2.3.2 Combinations 93

2.4 Generalized Permutations and Combinations 99

2.4.1 Permutations with Repetition 99

2.4.2 Combinations with Repetition 100

2.4.3 Permutations with Indistinguishable Objects . . 104

2.4.4 Distributing Objects into Boxes 105

2.4.5 Distinguishable Objects and Distinguishable Boxes106

2.4.6 Indistinguishable Objects Distinguishable Boxes 106

2.4.7 Distinguishable Objects and Indistinguishable Boxes

107

2.4.8 Indistinguishable Objects and Indistinguishable Boxes108

2.5 Generating Permutations and Combinations 110

2.5.1 Generating Permutations 110

2.5.2 Generating Combinations 112

3 Advanced Counting Techniques 119

3.1 Applications of Recurrence Relations 119

3.1.1 Modeling With Recurrence Relations 119

3.1.2 Algorithms and Recurrence Relations 126

3.2 Solving Linear Recurrence Relations 130

3.2.1 Solving Linear Homogeneous Recurrence Rela-

tions with Constant Coefficients 131

3.2.2 Linear Nonhomogeneous Recurrence Relations with

Constant Coefficients 140

3.3 Generating Functions 147

3.3.1 Counting Problems and Generating Functions . 149

3.3.2 Exponential Generating Functions 154

4 CONTENTS

3.3.3 Using Generating Functions to Solve Recurrence

Relations . 157

3.3.4 Proving Identities via Generating Functions . . . 160

4 Boolean Algebra 165

4.1 Boolean Functions . 165

4.1.1 Introduction . 165

4.1.2 Boolean Expressions and Boolean Functions . . 167

4.1.3 Identities of Boolean Algebra 170

4.1.4 Duality . 172

4.1.5 The Abstract Definition of a Boolean Algebra . . 173

4.2 Representing Boolean Functions 175

4.2.1 Sum-of-Products Expansions 175

4.2.2 Functional Completeness 177

4.3 Logic Gates . 180

4.3.1 Introduction . 180

4.3.2 Combinations of Gates 181

4.3.3 Examples of Circuits 182

4.3.4 Minimization of Circuits 184

4.3.5 Karnaugh Maps 186

4.3.6 The Quine-Mc Cluskey Method 191

5 Modelling Computation 201

5.1 Finite-State Machines with Output 201

5.2 Finite-State Machines with No Output 209

5.2.1 Set of Strings 209

5.2.2 Finite-State Automata 210

5.2.3 Language Recognition by Finite-State Machines 211

CONTENTS 5

5.2.4 Theorem (Myhill-Nerode Theorem) 217

5.2.5 Minimization of DFSA 221

5.2.6 Nondeterministic Finite-State Automata 222

5.3 Turing Machines . 228

5.3.1 Introduction 228

5.3.2 Definition of Turing Machines 228

5.3.3 Using Turing Machines to Recognize Sets . . . 232

5.3.4 Computing Functions with Turing Machines . . 234

5.3.5 Computational Complexity, Computability, and De-

cidability . 234

6 CONTENTS

Unit 1

Logic, Proofs and Algorithms

Objectives

1. To introduce students to the concept such as propositional logic and

propositional equivalences.

2. To make precise statements and to design logic circuits.

3. To learn about predicates and quantifiers.

4. To introduce different methods of proof and to apply these methods

in proving theorems.

5. To learn about the advantages of big-O notation.

1.1 Propositional Logic

1.1.1 Introduction

The rules of logic give precise meaning to mathematical statements.

These rules are used to distinguish between valid and invalid mathemati-

cal arguments.

7

8 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

Besides the importance of logic in understanding mathematical rea-

soning, logic has numerous applications to computer science. These rules

are used in the design of computer circuits, the construction of computer

programs, the verification of the correctness of programs, and in many

other ways.

1.1.2 Propositions

A proposition is a declarative sentence (that is, a sentence that declares a

fact) that is either true or false, but not both.

Example 1. All the following declarative sentences are propositions.

• Washington, D.C., is the capital of the united States of America.

• Tornoto is the capital of Canada.

• 1 + 1 = 2.

• 2 + 2 = 3.

Proposition 1 and 3 are true, whereas 2 and 4 are false.

Example 2. Consider the following sentences.

1. What time is it?

2. Read this carefully.

3. x+ 1 = 2.

4. x+ y = z.

Sentences 1 and 2 are not propositions because they are not declarative

sentences. Sentences 3 and 4 are not propositions because they are neither

true nor false. Note that each of sentences 3 and 4 can be turned into a

proposition if we assign values to the variables.

1.1. PROPOSITIONAL LOGIC 9

We use letters to denote propositional variables (or sentential vari-

ables), that is, variables that represent propositions, just as letters are used

to denote numerical variables. The conventional letters used for proposi-

tional variables are p, q, r, s, · · · . The truth value of a proposition is true,

denoted by T , if it is a true proposition, and the truth value of a proposi-

tion is false, denoted by F , if it is a false proposition. Propositions that

cannot be expressed in terms of simpler propositions are called atomic

propositions.

The area of logic that deals with propositions is called the proposi-

tional calculus or propositional logic.

Many mathematical statements are constructed by combining one or

more propositions. New propositions, called compound propositions,

are formed from existing propositions using logical operators.

Definition 3. Let p be a proposition. The negation of p, denoted by ¬p

(also denoted by p), is the statement

“It is not the case that p”.

The proposition ¬p is read “not p”. The truth value of the negation of

p,¬p, is the opposite of the truth value of p.

Example 4. Find the negation of the proposition

“Michael’s PC runs Linux.”

and express this in simple English.

Solution: The negation is

10 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

“It is not the case that Michael’s PC runs Linux.”

This negation can be more simply expressed as

“Michael’s PC does not run Linux.”

Example 5. Find the negation of the proposition

“Vadana’s smartphone has at least 32 GB of memory”

and express this in simple English.

Solution: The negation is

“It is not the case that Vandana’s smartphone has at leat 32 GB of

memory”

or even more simply as

“Vandana’s smartphone has less than 32 GB of memory.”

Table 1.1 displays the truth table for the negation of a proposition

p. This table has a row for each of the two possible truth values of a

proposition p. Each row shows the truth value of ¬p corresponding to the

truth value of p for this row.

Table 1.1: The Truth Table for the Negation of a Proposition

p ¬p

T F

F T

The negation of a proposition can also be considered the result of the

operation of the negation operator on a proposition. The negation oper-

ator constructs a new proposition from a single existing proposition. We

1.1. PROPOSITIONAL LOGIC 11

will now introduce the logical operators that are used to form new propo-

sitions from two or more existing propositions. These logical operators

are also called connectives.

Definition 6. Let p and q be propositions. The conjunction of p and q,

denoted by p ∧ q, is the proposition “ p and q.” The conjunction p ∧ q is

true when both p and q are true and is false otherwise.

Example 7. Find the conjunction of the propositions p and q where p is

the proposition “Rebeccas PC has more than 16 GB free hard disk space”

and q is the proposition “The processor in Rebeccas PC runs faster than

1 GHz.”

Solution: The conjunction of these propositions, p ∧ q, is the proposition

“ Rebeccas PC has more than 16 GB free hard disk space, and the pro-

cessor in Rebeccas PC runs faster than 1 GHz.” This conjunction can be

expressed more simply as “Rebeccas PC has more than 16 GB free hard

disk space, and its processor runs faster than 1 GHz.” For this conjunction

to be true, both conditions given must be true. It is false, when one or both

of these conditions are false.

Definition 8. Let p and q be propositions. The disjunction of p and q,

denoted by p∨ q, is the proposition “p or q.” The disjunction p∨ q is false

when both p and q are false and is true otherwise.

Table 1.3 displays the truth table for p ∨ q.

12 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

Table 1.2: The Truth Table for the Conjunction of two Proposition

p q p ∧ q

T T T

T F F

F T F

F F F

Table 1.3: The Truth Table for the Disjunction of two Proposition

p q p ∨ q

T T T

T F T

F T T

F F F

The use of the connective or in a disjunction corresponds to one of the

two ways the word or is used in English, namely, as an inclusive or. A

disjunction is true when at least one of the two propositions is true.

Example 9. Translate the statement “Students who have taken calculus

or introductory computer science can take this class” in a statement in

propositional logic using the propositions p: “ students who has taken

calculus can take this class”

Solution: We assume that this statement means that students who have

taken both calculus and introductory computer science can take the class,

1.1. PROPOSITIONAL LOGIC 13

as well as the students who have taken only one of the two subjects.

Hence, this statement can be expressed as p ∨ q, the inclusive or, or dis-

junction, of p and q.

Definition 10. Let p and q be propositions. The exclusive or of p and q,

denoted by p⊕ q (or p XOR q), is the proposition that is true when exactly

one of p and q is true and is false otherwise.

Example 11. Let p and q be the proposition that state “ A student can

have a salad with dinner” and “A student can have soup with dinner,”

respectively. What is p⊕ q, the exclusive or of p and q.

Solution: The exclusive or of p and q is the statement that is true when

exactly one of p and q is true. that is, p⊕ q is the statement “A student can

have soup or salad, but not both, with dinner.” Note that this is often stated

as “A student can have soup or a salad with dinner,” without explicitly

stating that taking both is not permitted.

Table 1.4: The Truth Table for the Exclusive or of Two Proposition

p q p⊕ q

T T F

T F T

F T T

F F F

Example 12. Express the statement “I will use all my savings to travel to

Europe or to buy an electric car” in propositional logic using the state-

ment p: “I will use all my savings to travel to Europe” and the statement

q: “I will use all my savings to buy an electric car.”

14 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

Solution: To translate this statement, we first note that the or in this state-

ment must be an exclusive or because this person can either use all their

savings to travel to Europe or use all these savings to buy an electric car,

but cannot both go to Europe and buy an electric car. (This is clear be-

cause either option requires all their savings.) Hence, this statement can

be expressed as p⊕ q.

1.1.3 Conditional Statements

Definition 13. Let p and q be propositions. The conditional statement

p → q is the proposition “if p, then q.” The conditional statement p → q

is false when p is true and q is false, and true otherwise. In the conditional

statement p → q, p is called the hypothesis (or antecedent or premise) and

q is called the conclusion (or consequence).

The statement p → q is called a conditional statement because p → q

asserts that q is true on the condition that p holds. A conditional statement

is also called an implication.

The truth table for the conditional statement p → q is shown in Table

1.5 .

Table 1.5: The Truth Table for the Conditional Statement p → q.

p q p → q

T T T

T F F

F T T

F F F

1.1. PROPOSITIONAL LOGIC 15

Example 14. Let p be the statement “Maria learns discrete mathematics”

and q the statement “Maria will find a good job.” Express the statement

p → q as a statement in English.

Solution: From the definition of conditional statements, we see that when

p is the statement “Maria learns discrete mathematics and q is the state-

ment Maria will find a good job,” p → q represents the statement

“If Maria learns discrete mathematics, then she will find a good job.”

There are many other ways to express this conditional statement in

English. Among the most natural of these are:

“Maria will find a good job when she learns discrete mathematics.”

“For Maria to get a good job, it is sufficient for her to learn discrete

mathematics.”

and

“Maria will find a good job unless she does not learn discrete mathe-

matics.”

Example 15. What is the value of the variable x after the statement

if 2 + 2 = 4 then x : x+ 1

if x = 0 before this statement is encountered? (The symbol:= stands for

assignment. The statement x : x+1 means the assignment of the value of

x+ 1 to x.

Solution: Because 2 + 2 = 4 is true, the assignment statement x : x + 1

is executed. Hence, x has the value 0 + 1 = 1 after this statement is en-

countered.

CONVERSE, CONTRAPOSITIVE, AND INVERSE:

We can form some new conditional statements starting with a conditional

statement p → q. In particular, there are three related conditional state-

ments that occur so often that they have special names. The proposition

16 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

q → p is called the converse of p → q. The contrapositive of p → q is

the proposition ¬q → ¬p. The proposition ¬p → ¬q is called the inverse

of p → q. We will see that of these three conditional statements formed

from p → q, only the contrapositive always has the same truth value as

p → q.

We first show that the contrapositive, ¬q → ¬p, of a conditional state-

ment p → q always has the same truth value as p → q. To see this, note

that the contrapositive is false only when ¬p is false and ¬q is true, that is,

only when p is true and q is false. We now show that neither the converse,

q → p, nor the inverse, ¬p → ¬q, has the same truth value as p → q

for all possible truth values of p and q. Note that when p is true and q is

false, the original conditional statement is false, but the converse and the

inverse are both true.

When two compound propositions always have the same truth values,

regardless of the truth values of its propositional variables, we call them

equivalent. Hence, a conditional statement and its contrapositive are

equivalent. The converse and the inverse of a conditional statement are

also equivalent, as the reader can verify, but neither is equivalent to the

original conditional statement. Take note that one of the most common

logical errors is to assume that the converse or the inverse of a conditional

statement is equivalent to this conditional statement.

Example 16. Find are the contrapositive, the converse, and the inverse of

the conditional statement

“The home team wins whenever it is raining?”

Solution: : Because “q whenever p” is one of the ways to express the

conditional statement p → q, the original statement can be rewritten as

“If it is raining, then the home team wins.”

1.1. PROPOSITIONAL LOGIC 17

Consequently, the contrapositive of this conditional statement is

“If the home team does not win, then it is not raining.”

The converse is

“If the home team wins, then it is raining.”

The inverse is

“If it is not raining, then the home team does not win.”

Only the contrapositive is equivalent to the original statement.

Table 1.6: The Truth Table for the Biconditional Statement p ↔ q.

p q p ↔ q

T T T

T F F

F T F

F F T

BICONDITIONALS: We now introduce another way to combine propo-

sitions that expresses that two propositions have the same truth value.

Definition 17. Let p and q be propositions. The biconditional statement

p ↔ q is the proposition “p if and only if q.” The biconditional statement

p ↔ q is true when p and q have the same truth values, and is false

otherwise. Biconditional statements are also called bi-implications.

The truth table for p ↔ q is shown in Table 1.6.

Example 18. Let p be the statement “You can take the flight,” and let q

be the statement “You buy a ticket.” Then p ↔ q is the statement

“You can take the flight if and only if you buy a ticket.”

18 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

This statement is true if p and q are either both true or both false, that

is, if you buy a ticket and can take the flight or if you do not buy a ticket

and you cannot take the flight. It is false when p and q have opposite

truth values, that is, when you do not buy a ticket, but you can take the

flight (such as when you get a free trip) and when you buy a ticket but you

cannot take the flight (such as when the airline bumps you).

1.1.4 Truth Tables of Compound Propositions

Example 19. Construct the truth table of the compound proposition

(p ∨ ¬q) → (p ∧ q).

Solution: Because this truth table involves two propositional variables p

and q, there are four rows in this truth table, one for each of the pairs of

truth values TT, TF, FT, and FF. The first two columns are used for the

truth values of p and q, respectively. In the third column we find the truth

value of ¬q, needed to find the truth value of p ∨ ¬q, found in the fourth

column. The fifth column gives the truth value of p ∧ q. Finally, the truth

value of (p ∧ ¬q) → (p ∧ q) is found in the last column. The resulting

truth table is shown in Table 1.7.

Table 1.7: The Truth Table (p ∨ ¬q) → (p ∧ q).

p q ¬q p ∨ ¬q p ∧ q (p ∨ ¬q) → (p ∧ q)

T T F T T T

T F T T F F

F T F F F T

F F T T F F

1.1. PROPOSITIONAL LOGIC 19

1.1.5 Precedence of Logical Operators

Table 1.8 displays the precedence levels of the logical operators, ¬,∧,∨,→

and ↔.

Table 1.8: Precedence of Logical Operators.

Operator Precedence

¬ 1

∧ 2

∨ 3

→ 4

↔ 5

1.1.6 Logic and Bit Operations

Computers represent information using bits. A bit is a symbol with two

possible values, namely, 0 (zero) and 1 (one). This meaning of the word

bit comes from binary digit, because zeros and ones are the digits used

in binary representations of numbers. The well-known statistician John

Tukey introduced this terminology in 1946. A bit can be used to represent

a truth value, because there are two truth values, namely, true and false.

As is customarily done, we will use a 1 bit to represent true and a 0 bit

to represent false. That is, 1 represents T (true), 0 represents F (false).

A variable is called a Boolean variable if its value is either true or false.

Consequently, a Boolean variable can be represented using a bit.

Computer bit operations correspond to the logical connectives. By

replacing true by a one and false by a zero in the truth tables for the

20 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

Truth Value Bit
T 1
F 0

operators ∧,∨, and ⊕, the tables shown in Table 1.9 for the corresponding

bit operations are obtained. We will also use the notation OR, AND, and

XOR for the operators ∨,∧, and ⊕, as is done in various programming

languages.

Table 1.9: Table for the Bit Operators OR, AND, and XOR.

x y x ∨ y x ∧ y x⊕ y

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 0

Definition 20. A bit string is a sequence of zero or more bits. The length

of this string is the number of bits in the string.

Example 21. 101010011 is a bit string of length nine.

We can extend bit operations to bit strings. We define the bitwise OR,

bitwise AND, and bitwise XOR of two strings of the same length to be the

strings that have as their bits the OR, AND, and XOR of the corresponding

bits in the two strings, respectively. We use the symbols ∨,∧, and ⊕

to represent the bitwise OR, bitwise AND, and bitwise XOR operations,

respectively. We illustrate bitwise operations on bit strings with Example

1.1. PROPOSITIONAL LOGIC 21

22.

Example 22. Find the bitwise OR, bitwise AND, and bitwise XOR of the

bit strings 01 1011 0110 and 11 0001 1101. (Here, and throughout this

book, bit strings will be split into blocks of four bits to make them easier

to read.)

Solution: The bitwise OR, bitwise AND, and bitwise XOR of these strings

are obtained by taking the OR, AND, and XOR of the corresponding bits,

respectively. This gives us

01 1011 0110

11 0001 1101

11 1011 1111 bitwise OR

01 0001 0100 bitwise AND

10 1010 1011 bitwise XOR

Let Us Sum Up

In this section, we discussed about

∗ Propositions

∗ Conditional statements

∗ Truth tables of compound propositions

∗ Precedence of logical operators

∗ Logic and Bit operators.

22 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

Check your Progress

1. In the conditional statements p → q, p is called

(a) hypothesis

(b) implication

(c) if then

(d) converse

2. A bit is a

(a) Logical operator

(b) truth value T or F

(c) symbol with two possible values 0 and 1

(d) Boolean variable

3. The length of a bit string is in the string.

(a) number of bit operations

(b) number of truth values

(c) number of 1’s

(d) number of bits

1.2 Applications of Propositional Logic

1.2.1 Introduction

Logic has many important applications to mathematics, computer science,

and numerous other disciplines. Statements in mathematics and the sci-

1.2. APPLICATIONS OF PROPOSITIONAL LOGIC 23

ences and in natural language often are imprecise or ambiguous. To make

such statements precise, they can be translated into the language of logic.

1.2.2 Translating English Sentences

There are many reasons to translate English sentences into expressions

involving propositional variables and logical connectives. In particular,

English (and every other human language) is often ambiguous. Trans-

lating sentences into compound statements (and other types of logical

expressions, which we will introduce later in this chapter) removes the

ambiguity.

Example 23. How can this English sentence be translated into a logical

expression?

“You can access the Internet from campus only if you are a computer

science major or you are not a freshman.”

Solution: There are many ways to translate this sentence into a logical

expression. Although it is possible to represent the sentence by a single

propositional variable, such as p, this would not be useful when analyz-

ing its meaning or reasoning with it. Instead, we will use propositional

variables to represent each sentence part and determine the appropriate

logical connectives between them. In particular, we let a, c, and f rep-

resent “You can access the Internet from campus,” “You are a computer

science major,” and “You are a freshman,” respectively. Noting that “only

if” is one way a conditional statement can be expressed, this sentence can

be represented as

a → (c ∨ ¬f).

Example 24. How can this English sentence be translated into a logical

expression?

24 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

“You cannot ride the roller coaster if you are under 4 feet tall unless

you are older than 16 years old.”

Solution: Let q, r, and s represent “You can ride the roller coaster,” “You

are under 4 feet tall,” and “You are older than 16 years old,” respectively.

Then the sentence can be translated to

(r ∧ ¬s) → ¬q.

There are other ways to represent the original sentence as a logical ex-

pression, but the one we have used should meet our needs.

1.2.3 System Specifications

Example 25. Express the specification “The automated reply cannot be

sent when the file system is full” using logical connectives.

Solution: One way to translate this is to let p denote “The automated reply

can be sent” and q denote “The file system is full.” Then ¬p represents

“It is not the case that the automated reply can be sent,” which can also

be expressed as “The automated reply cannot be sent.” Consequently, our

specification can be represented by the conditional statement q → ¬p.

System specifications should be consistent, that is, they should not

contain conflicting requirements that could be used to derive a contra-

diction. When specifications are not consistent, there would be no way to

develop a system that satisfies all specifications.

Example 26. Determine whether these system specifications are consis-

tent:

“The diagnostic message is stored in the buffer or it is retransmitted.”

“The diagnostic message is not stored in the buffer.”

1.2. APPLICATIONS OF PROPOSITIONAL LOGIC 25

“If the diagnostic message is stored in the buffer, then it is retransmit-

ted.”

Solution: To determine whether these specifications are consistent, we

first express them using logical expressions. Let p denote “The diagnostic

message is stored in the buffer” and let q denote “The diagnostic message

is retransmitted.” The specifications can then be written as p ∨ q, ¬p, and

p → q. An assignment of truth values that makes all three specifications

true must have p false to make ¬p true. Because we want p ∨ q to be

true but p must be false, q must be true. Because p → q is true when p

is false and q is true, we conclude that these specifications are consistent,

because they are all true when p is false and q is true. We could come to

the same conclusion by use of a truth table to examine the four possible

assignments of truth values to p and q.

Example 27. Do the system specifications in Example 4 remain consis-

tent if the specification “The diagnostic message is not retransmitted” is

added?

Solution: By the reasoning in Example 4, the three specifications from

that example are true only in the case when p is false and q is true. How-

ever, this new specification is ¬q, which is false when q is true. Conse-

quently, these four specifications are inconsistent.

1.2.4 Boolean Searches

Logical connectives are used extensively in searches of large collections

of information, such as indexes of Web pages. Because these searches em-

ploy techniques from propositional logic, they are called Boolean searches.

In Boolean searches, the connective AND is used to match records that

contain both of two search terms, the connective OR is used to match one

26 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

or both of two search terms, and the connective NOT (sometimes written

as AND NOT) is used to exclude a particular search term.

Example 28. Web Page Searching Most Web search engines support

Boolean searching techniques, which usually can help find Web pages

about particular subjects. For instance, using Boolean searching to find

Web pages about universities in New Mexico, we can look for pages match-

ing NEW AND MEXICO AND UNIVERSITIES. The results of this search

will include those pages that contain the three words NEW, MEXICO,

and UNIVERSITIES. This will include all of the pages of interest, together

with others such as a page about new universities in Mexico. (Note that in

Google, and many other search engines, the word “AND” is not needed,

although it is understood, because all search terms are included by de-

fault. These search engines also support the use of quotation marks to

search for specific phrases. So, it may be more effective to search for

pages matching “New Mexico” AND UNIVERSITIES.)

Next, to find pages that deal with universities in New Mexico or Ari-

zona, we can search for pages matching (NEW AND MEXICO OR ARI-

ZONA) AND UNIVERSITIES. (Note: Here the AND operator takes prece-

dence over the OR operator. Also, in Google, the terms used for this

search would be NEW MEXICO OR ARIZONA.) The results of this search

will include all pages that contain the word UNIVERSITIES and either

both the words NEW and MEXICO or the word ARIZONA. Again, pages

besides those of interest will be listed. Finally, to find Web pages that deal

with universities in Mexico (and not New Mexico), we might first look for

pages matching MEXICO AND UNIVERSITIES, but because the results

of this search will include pages about universities in New Mexico, as well

as universities in Mexico, it might be better to search for pages matching

1.2. APPLICATIONS OF PROPOSITIONAL LOGIC 27

(MEXICO AND UNIVERSITIES) NOT NEW. The results of this search

include pages that contain both the words MEXICO and UNIVERSITIES

but do not contain the word NEW. (In Google, and many other search

engines, the word “NOT” is replaced by the symbol “-”. In Google, the

terms used for this last search would be MEXICO UNIVERSITIES -NEW.)

1.2.5 Logic Circuits

A logic circuit (or digital circuit) receives input signals p1, p2, · · · , pn,

each a bit [either 0 (off) or 1 (on)], and produces output signals s1, s2, · · · , sn,

each a bit.

Complicated digital circuits can be constructed from three basic cir-

cuits, called gates, shown in Figure 1.1. The inverter, or NOT gate, takes

an input bit p, and produces as output ¬p. The OR gate takes two input

signals p and q, each a bit, and produces as output the signal p∨q. Finally,

the AND gate takes two input signals p and q, each a bit, and produces as

output the signal p ∧ q. We use combinations of these three basic gates to

build more complicated circuits, such as that shown in Figure 1.2.

Figure 1.1: Basic logic gates.

Example 29. Determine the output for the combinatorial circuit in Figure

1.2.

Solution: In Figure 1.2 we display the output of each logic gate in the

circuit. We see that the AND gate takes input of p and ¬q, the output of

28 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

the inverter with input q, and produces p∧¬q. Next, we note that the OR

gate takes input p∧¬q and ¬r, the output of the inverter with input r, and

produces the final output (p ∧ ¬q) ∨ ¬r.

Suppose that we have a formula for the output of a digital circuit in

terms of negations, disjunctions, and conjunctions. Then, we can sys-

tematically build a digital circuit with the desired output, as illustrated in

Example 30.

Figure 1.2: A combinatorial circuit.

Figure 1.3: The circuit for (p ∨ ¬r) ∧ (¬p ∨ (q ∨ ¬r)).

Example 30. Build a digital circuit that produces the output (p∨¬r)∧ (

negp ∨ (q ∨ ¬r)) when given input bits p, q, and r.

Solution: To construct the desired circuit, we build separate circuits for

p ∨ ¬r and for ¬p ∨ (q ∨ ¬r) and combine them using an AND gate. To

construct a circuit for p ∨ ¬r, we use an inverter to produce ¬r from the

input r. Then, we use an OR gate to combine p and ¬r. To build a circuit

for ¬p ∨ (q ∨ ¬r), we first use an inverter to obtain ¬r. Then we use an

OR gate with inputs q and ¬r to obtain q ∨ ¬r. Finally, we use another

inverter and an OR gate to get ¬p∨ (q∨¬r) from the inputs p and q∨¬r.

1.2. APPLICATIONS OF PROPOSITIONAL LOGIC 29

To complete the construction, we employ a final AND gate, with inputs

p∨¬r and ¬p∨ (q ∨¬r). The resulting circuit is displayed in Figure 1.3.

Let Us Sum Up

In this section, we discussed about

∗ Applications of propositional logic.

∗ Boolean searches.

∗ Logic circuits

Check your Progress

1. In Boolean searches, the connective AND is used to match records that

contain

(a) one or both of the search items

(b) both of two search items

(c) Both (a) and (b)

(d) information excluding a particular search term

2. A compound proposition that is always true is called

(a) tautology

(b) contradiction

(c) contingency

(d) predicate

30 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

1.3 Propositional Equivalences

Definition 31. A compound proposition that is always true, no matter

what the truth values of the propositional variables that occur in it, is

called a tautology. A compound proposition that is always false is called

a contradiction. A compound proposition that is neither a tautology nor

a contradiction is called a contingency.

Example 32. We can construct examples of tautologies and contradic-

tions using just one propositional variable. Consider the truth tables of

p ∨ ¬p and p ∧ ¬p, shown in Table 1.10. Because p ∨ ¬p is always true,

it is a tautology. Because p ∧ ¬p is always false, it is a contradiction.

Table 1.10: Examples of a Tautology and a Contradiction.

p ¬p p ∨ ¬p p ∧ ¬p

T F T F

F T T F

1.3.1 Logical Equivalences

Definition 33. The compound propositions p and q are called logically

equivalent if p ↔ q is a tautology. The notation p ≡ q denotes that p and

q are logically equivalent.

Example 34 illustrates this method to establish an extremely important

and useful logical equivalence, namely, that of ¬(p ∨ q) with ¬p ∧ ¬q.

This logical equivalence is one of the two De Morgan laws, shown in

Table 1.11, named after the English mathematician Augustus De Morgan,

of the mid-nineteenth century.

1.3. PROPOSITIONAL EQUIVALENCES 31

Table 1.12: Truth Tables for ¬(p ∨ q) and ¬p ∧ ¬q.

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

Table 1.11: De Morgan’s Law

¬(p ∧ q) ≡ ¬p ∨ ¬q

¬(p ∨ q) ≡ ¬p ∧ ¬q

Example 34. Show that ¬(p ∨ q) and ¬p ∧ ¬q are logically equivalent.

Solution: The truth tables for these compound propositions are displayed

in Table 1.12. Because the truth values of the compound propositions

¬(p ∨ q) and ¬p ∧ ¬q agree for all possible combinations of the truth

values of p and q, it follows that ¬(p∨ q) ↔ (¬p∧¬q) is a tautology and

that these compound propositions are logically equivalent.

Example 35. Show that p → q and ¬p ∨ q are logically equivalent.

Solution: We construct the truth table for these compound propositions

in Table 1.13. Because the truth values of ¬p ∨ q and p → q agree, they

are logically equivalent.

Example 36. Show that p ∨ (q ∧ r) and (p ∧ q) ∧ (p ∨ r) are logically

equivalent. This is the distributive law of disjunction over conjunction.

Solution: We construct the truth table for these compound propositions

in Table 1.14. Because the truth values of p∨ (q ∧ r) and (p∨ q)∧ (p∨ r)

agree, these compound propositions are logically equivalent.

32 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

Table 1.13: Truth Tables for ¬p ∨ q and p → q.

p q ¬p ¬p ∨ q p → q

T T F T T
T F F F F
F T T T T
F F T T T

Table 1.14: A Demonstration That p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) are
Logically Equivalent.

p q r q ∧ r p ∨ (q ∧ r) p ∨ q p ∨ r (p ∨ q) ∧ (p ∨ r)

T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F

Table 1.15 contains some important equivalences. In these equiva-

lences, T denotes the compound proposition that is always true and F

denotes the compound proposition that is always false. We also display

some useful equivalences for compound propositions involving condi-

tional statements and biconditional statements in Tables 1.16 and 1.17,

respectively.

1.3.2 Using De Morgans Laws

Example 37. Use De Morgans laws to express the negations of “Miguel

has a cellphone and he has a laptop computer” and “Heather will go to

1.3. PROPOSITIONAL EQUIVALENCES 33

Table 1.15: Logically Equivalences.

Equivalences Name
p ∧ T ≡ p Identity laws
p ∨ F ≡ p

p ∨ T ≡ T Domination laws
p ∧ F ≡ F

p ∨ p ≡ p Idempotent laws
p ∧ p ≡ p

¬(¬p) ≡ p Double negation law

p ∨ q ≡ q ∨ p Commutative laws
p ∧ q ≡ q ∧ p

(p ∧ q) ∨ r ≡ p ∨ (q ∨ r) Associative laws
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∨ (p ∨ r) Distributive laws
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgans laws
¬(p ∨ q) ≡ ¬p ∧ ¬q
p ∨ (p ∧ q) ≡ p Absorption laws
p ∧ (p ∨ q) ≡ p

p ∨ ¬p ≡ T Negation laws
p ∧ ¬p ≡ F

34 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

the concert or Steve will go to the concert.”

Solution: Let p be “Miguel has a cellphone” and q be “Miguel has a

laptop computer.” Then “Miguel has a cellphone and he has a laptop

computer” can be represented by p ∧ q. By the first of De Morgans laws,

¬(p ∧ q) is equivalent to ¬p ∨ ¬q. Consequently, we can express the

negation of our original statement as “Miguel does not have a cellphone

or he does not hav a laptop computer.”

Let r be “Heather will go to the concert” and s be “Steve will go to

the concert.” Then “Heather will go to the concert or Steve will go to

the concert” can be represented by r ∨ s. By the second of De Morgans

laws, ¬(r∨ s) is equivalent to ¬r∧¬s. Consequently, we can express the

negation of our original statement as “Heather will not go to the concert

and Steve will not go to the concert.”

Table 1.16: Logical Equivalences Involving Conditional Statements.

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p
p ∨ q ≡ ¬p → q

p ∧ q ≡ ¬(p → ¬q)
¬(p → q) ≡ p ∧ ¬q

(p → q) ∧ (p → r) ≡ p → (q ∧ r)

(p → r) ∧ (q → r) ≡ (p ∨ q) → r

(p → q) ∨ (p → r) ≡ p → (q ∨ r)

(p → r) ∨ (q → r) ≡ (p ∧ q) → r

1.3.3 Constructing New Logical Equivalences

Example 38. Show that ¬(p → q) and p ∧ ¬q are logically equivalent.

Solution: We could use a truth table to show that these compound propo-

sitions are equivalent (similar to what we did in Example 36). Indeed, it

1.3. PROPOSITIONAL EQUIVALENCES 35

Table 1.17: Logical Equivalences Involving Biconditional Statements.

p ↔ q ≡ (p → q) ∧ (q → p)

p ↔ q ≡ ¬p ↔ ¬q
p ↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)

¬(p ↔ q) ≡ p ↔ ¬q

would not be hard to do so. However, we want to illustrate how to use

logical identities that we already know to establish new logical identities,

something that is of practical importance for establishing equivalences of

compound propositions with a large number of variables. So, we will es-

tablish this equivalence by developing a series of logical equivalences, us-

ing one of the equivalences in Table 1.15 at a time, starting with ¬(p → q)

and ending with p ∧ ¬q. We have the following equivalences.

¬(p → q) ≡ ¬(¬p ∨ q) by the conditional-disjunction

equivalence (Example 35)

≡ ¬(¬p) ∧ ¬q by the second De Morgan law

≡ p ∧ ¬q by the double negation law

Example 39. Show that ¬(p∨ (¬p∧ q)) and ¬p∧¬q are logically equiv-

alent by developing a series of logical equivalences.

Solution: We will use one of the equivalences in Table 1.15 at a time,

starting with ¬(p ∨ (¬p ∧ q)) and ending with ¬p ∧ ¬q. (Note: we could

also easily establish this equivalence using a truth table.) We have the

36 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

following equivalences.

¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬(¬p ∧ q) by the second De Morgan law

≡ ¬p ∧ [¬(¬p) ∧ ¬q] by the first De Morgan law

≡ ¬p ∧ (p ∨ ¬q) by the double negation law

≡ (¬p ∧ p) ∨ (¬p ∧ ¬q) by the second distributive law

≡ (¬p ∧ ¬q) ∨ F by the commutative law for disjunction

≡ ¬p ∧ ¬q by the identity law for F

Consequently ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent.

Example 40. Show that (p ∧ q) → (p ∨ q) is a tautology.

Solution: To show that this statement is a tautology, we will use logical

equivalences to demonstrate that it is logically equivalent to T. (Note:

This could also be done using a truth table.)

(p ∧ q) → (p ∧ q) ≡ ¬(p ∧ q) ∨ (p ∨ q) by Example 35

≡ (¬p ∨ ¬q) ∨ (p ∨ q) by the first De Morgan law

≡ (¬p ∨ p) ∨ (¬q ∨ q) by the associative and

commutative laws for disjunction

≡ T ∨ T by Example 1 and the

commutative law for disjunction

≡ T by the domination law

1.3.4 Satisfiability

A compound proposition is satisfiable if there is an assignment of truth

values to its variables that makes it true. When no such assignments exists,

1.3. PROPOSITIONAL EQUIVALENCES 37

that is, when the compound proposition is false for all assignments of truth

values to its variables, the compound proposition is unsatisfiable.

When we find a particular assignment of truth values that makes a

compound proposition true, we have shown that it is satisfiable; such an

assignment is called a solution of this particular satisfiability problem.

Example 41. Determine whether each of the compound propositions (p∨

¬q)∧ (q ∨¬r)∧ (r ∨¬p), (p∨ q ∨ r)∧ (¬p∨¬q ∨¬r), and (p∨¬q)∧

(q ∨ ¬r) ∧ (r ∨ ¬p) ∧ (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) is satisfiable.

Solution: Instead of using truth table to solve this problem, we will reason

about truth values. Note that (p∨¬q)∧(q∨¬r)∧(r∨¬p) is true when the

three variable p, q, and r have the same truth value. Hence, it is satisfiable

as there is at least one assignment of truth values for p, q, and r that

makes it true. Similarly, note that (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) is true

when at least one of p, q, and r is true and at least one is false. Hence,

(p∨q∨r)∧(¬p∨¬q∨¬r) is satisfiable, as there is at least one assignment

of truth values for p, q, and r that makes it true.

Finally, note that for (p ∨ ¬q) ∧ (q ∨ ¬ ∧ r) ∧ (r ∨ ¬p) ∧ (p ∨ q ∨

r) ∧ (¬p ∨ ¬q ∨ ¬r) to be true, (p ∨ ¬q) ∧ (q ∨ ¬r) ∧ (r ∨ ¬p) and

(p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) must both be true. For the first to be true,

the three variables must have the same truth values, and for the second

to be true, at least one of three variables must be true and at least one

must be false. However, these conditions are contradictory. From these

observations we conclude that no assignment of truth values to p, q, and r

makes (p∨¬q)∧ (q∨¬r)∧ (r∨¬p)∧ (p∨ q∨ r)∧ (¬p∨¬q∨¬r) true.

Hence, it is unsatisfiable.

38 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

Let Us Sum Up

In this section, we discussed about

∗ Logical equivalences.

∗ Construction of new logical equivalences.

∗ Satisfiability.

Check your Progress

1. The statement p → q ≡ ¬p ∨ q is called

(a) De Morgan’s law

(b) Conditional - disjunction equivalence

(c) Negation law

(d) a tautology

2. The statement P ∨ (p ∧ q) ≡ p is called

(a) commutative

(b) Identity law

(c) Absorption law

(d) Associative law

1.4. PREDICATES AND QUANTIFIERS 39

1.4 Predicates and Quantifiers

1.4.1 Predicates

The statement “x is greater than 3” has two parts. The first part, the vari-

able x, is the subject of the statement. The second-part the predicate, “is

greater than 3”-refers to a property that the subject of the statement can

have. We can denote the statement “x is greater than 3” by P (x), where P

denotes the predicate “is greater than 3” and x is the variable. The state-

ment P (x) is also said to be the value of the propositional function P at

x. Once a value has been assigned to the variable x, the statement P (x)

becomes a proposition and has a truth value. Consider Examples 42 and

43.

Example 42. Let P (x) denote the statement “x ¿ 3.” What are the truth

values of P (4) and P (2)?

Solution: We obtain the statement P (4) by setting x = 4 in the statement

“x > 3.” Hence, P (4), which is the statement “4 > 3,” is true. However,

P (2), which is the statement “2 > 3,” is false.

Example 43. Let A(x) denote the statement “Computer x is under attack

by an intruder.” Suppose that of the computers on campus, only CS2 and

MATH1 are currently under attack by intruders. What are truth values of

A(CS1), A(CS2), and A(MATH1)?

Solution: We obtain the statement A(CS1) by setting x = CS1 in the

statement “Computer x is under attack by an intruder.” Because CS1 is not

on the list of computers currently under attack, we conclude that A(CS1)

is false. Similarly, because CS2 and MATH1 are on the list of computers

under attack, we know that A(CS2) and A(MATH1) are true.

40 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

We can also have statements that involve more than one variable. For

instance, consider the statement “x = y+3.” We can denote this statement

by Q(x, y), where x and y are variables and Q is the predicate. When

values are assigned to the variables x and y, the statement Q(x, y) has a

truth value.

Example 44. Let Q(x, y) denote the statement “x = y + 3.” What are

the truth values of the propositions Q(1, 2) and Q(3, 0)?

Solution: To obtain Q(1, 2), set x = 1 and y = 2 in the statement Q(x, y).

Hence,Q(1, 2) is the statement “1 = 2+3,” which is false. The statement

Q(3, 0) is the proposition “3 = 0 + 3,” which is true.

Similarly, we can let R(x, y, z) denote the statement “x + y = z.”

When values are assigned to the variables x, y, and z, this statement has

a truth value.

Example 45. What are the truth values of the propositions R(1, 2, 3) and

R(0, 0, 1)?

Solution: The proposition R(1, 2, 3) is obtained by setting x = 1, y =

2, and z = 3 in the statement R(x, y, z). We see that R(1, 2, 3) is the

statement “1 + 2 = 3,” which is true. Also note that R(0, 0, 1), which is

the statement “0 + 0 = 1,” is false.

Example 46. Consider the statement

if x > 0 then x := x+ 1.

When this statement is encountered in a program, the value of the vari-

able x at that point in the execution of the program is inserted into P (x),

which is “x > 0.” If P (x) is true for this value of x, the assignment state-

ment x := x+1 is executed, so the value of x is increased by 1. If P (x) is

1.4. PREDICATES AND QUANTIFIERS 41

false for this value of x, the assignment statement is not executed, so the

value of x is not changed.

PRECONDITIONS AND POSTCONDITIONS The statements that

describe valid input are known as preconditions and the conditions that

the output should satisfy when the program has run are known as post-

conditions.

Example 47. Consider the following program, designed to interchange

the values of two variables x and y.

temp := x

x := y

y := temp

Find predicates that we can use as the precondition and the postcondition

to verify the correctness of this program. Then explain how to use them to

verify that for all valid input the program does what is intended.

Solution: For the precondition, we need to express that x and y have

particular values before we run the program. So, for this precondition

we can use the predicate P (x, y), where P (x, y) is the statement “x = a

and y = b,” where a and b are the values of x and y before we run the

program. Because we want to verify that the program swaps the values

of x and y for all input values, for the postcondition we can use Q(x, y),

where Q(x, y) is the statement “x = b and y = a.” To verify that the

program always does what it is supposed to do, suppose that the precon-

dition P (x, y) holds. That is, we suppose that the statement “x = a and

y = b” is true. This means that x = a and y = b. The first step of the

program, temp := x, assigns the value of x to the variable temp, so after

42 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

this step we know that x = a, temp = a, and y = b. After the second

step of the program, x := y, we know that x = b, temp = a, and y = b.

Finally, after the third step, we know that x = b, temp = a, and y = a.

Consequently, after this program is run, the postcondition Q(x, y) holds,

that is, the statement “x = b and y = a” is true.

1.4.2 Quantifiers

The area of logic that deals with predicates and quantifiers is called the

predicate calculus.

The Universal Quantifier: Many mathematical statements assert that a

property is true for all values of a variable in a particular domain, called

the domain of discourse (or the universe of discourse), often just re-

ferred to as the domain. Such a statement is expressed using universal

quantification.

Definition 48. The universal quantification of P (x) is the statement

“P (x) for all values of x in the domain.”

The notation ∀ xP (x) denotes the universal quantification of P (x).

Here ∀ is called the universal quantifier. We read ∀ xP (x) as “for all

xP (x)” or “for every xP (x).” An element for which P (x) is false is

called a counter example of ∀ xP (x).

Example 49. Let P (x) be the statement “x + 1 > x.” What is the truth

value of the quantification ∀ xP (x), where the domain consists of all real

numbers?

Solution: : Because P (x) is true for all real numbers x, the quantification

∀ xP (x)

1.4. PREDICATES AND QUANTIFIERS 43

is true.

Example 50. Let Q(x) be the statement “x < 2.” What is the truth value

of the quantification ∀ xQ(x), where the domain consists of all real num-

bers?

Solution: Q(x) is not true for every real number x, because, for in-

stance, Q(3) is false. That is, x = 3 is a counterexample for the statement

∀ xQ(x). Thus

∀ xQ(x)

is false.

Example 51. Suppose that P (x) is “x2 > 0.” To show that the statement

∀ xP (x) is false where the universe of discourse consists of all integers,

we give a counterexample. We see that x = 0 is a counterexample because

x2 = 0 when x = 0, so that x2 is not greater than 0 when x = 0.

Example 52. What does the statement ∀ xN(x) mean if N(x) is “Com-

puter x is connected to the network” and the domain consists of all com-

puters on campus?

Solution: The statement ∀ xN(x) means that for every computer x on

campus, that computer x is connected to the network. This statement can

be expressed in English as “Every computer on campus is connected to

the network.”

Example 53. What is the truth value of ∀ x(x2 ≥ x) if the domain consists

of all real numbers? What is the truth value of this statement if the domain

consists of all integers?

Solution: The universal quantification ∀ x(x2 ≥ x), where the domain

consists of all real numbers, is false. For example,
(
1
2

)2 � 1
2 . Note that

44 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

x2 ≥ x if and only if x2 − x = x(x − 1) ≥ 0. Consequently, x2 ≥ x

if and only if x ≤ 0 or x ≥ 1. It follows that ∀ x(x2 ≥ x) is false if

the domain consists of all real numbers (because the inequality is false

for all real numbers x with 0 < x < 1). However, if the domain consists

of the integers, ∀ x(x2 ≥ x) is true, because there are no integers x with

0 < x < 1.

The Existential Quantifier: Many mathematical statements assert that

there is an element with a certain property. Such statements are expressed

using existential quantification. With existential quantification, we form

a proposition that is true if and only if P (x) is true for at least one value

of x in the domain

Definition 54. The existential quantification of P (x) is the proposition

“There exists an element x in the domain such that P (x).”

We use the notation ∃ xP (x) for the existential quantification of P (x).

Here ∃ is called the existential quantifier.

Example 55. Let P (x) denote the statement “x > 3.” What is the truth

value of the quantification ∃xP (x), where the domain consists of all real

numbers?

Solution: Because “x > 3” is sometimes true-for instance, when x =

4the existential quantification of P (x), which is ∃xP (x), is true.

Example 56. Let Q(x) denote the statement “x = x + 1.” What is the

truth value of the quantification ∃ xQ(x), where the domain consists of

all real numbers?

Solution: Because Q(x) is false for every real number x, the existential

quantification of Q(x), which is ∃ xQ(x), is false.

1.4. PREDICATES AND QUANTIFIERS 45

1.4.3 Quantifiers Over Finite Domains

Example 57. What is the truth value of ∃ xP (x), where P (x) is the state-

ment “x2 < 10” and the universe of discourse consists of the positive

integers not exceeding 4?

Solution: The statement ∀ xP (x) is the same as the conjunction P (1) ∧

P (2) ∧ P (3) ∧ P (4), because the domain consists of the integers 1, 2,

3, and 4. Because P (4), which is the statement “42 < 10,” is false, it

follows that ∀ xP (x) is false.

Example 58. What is the truth value of ∃ xP (x), where P (x) is the state-

ment “x2 > 10” and the universe of discourse consists of the positive

integers not exceeding 4?

Solution: Because the domain is {1, 2, 3, 4}, the proposition ∃ xP (x) is

the same as the disjunction P (1) ∨ P (2) ∨ P (3) ∨ P (4). Because P (4),

which is the statement “42 > 10,” is true, it follows that ∃ xP (x) is true.

1.4.4 Quantifiers with Restricted Domains

Example 59. What do the statements ∀ x < 0(x2 > 0), ∀y = 0(y3 = 0),

and ∃z > 0(z2 = 2) mean, where the domain in each case consists of the

real numbers?

Solution: The statement ∀x < 0(x2 > 0) states that for every real number

x with x < 0, x2 > 0. That is, it states

“The square of a negative real number is positive.” This statement is

the same as ∀x(x < 0 → x2 > 0).

The statement ∀y = 0(y3 = 0) states that for every real number y with

y = 0, we have y3 = 0. That is, it states “The cube of every nonzero

46 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

real number is nonzero.” Note that this statement is equivalent to ∀ y(y =

0 → y3 = 0).

Finally, the statement ∃z > 0(z2 = 2) states that there exists a real

number z with z > 0 such that z2 = 2. That is, it states “There is a positive

square root of 2.” This statement is equivalent to ∃z(z > 0 ∧ z2 = 2).

1.4.5 Precedence of Quantifiers

When a quantifier is used on the variable x, we say that this occurrence of

the variable is bound. An occurrence of a variable that is not bound by a

quantifier or set equal to a particular value is said to be free.

The part of a logical expression to which a quantifier is applied is

called the scope of this quantifier.

Example 60. In the statement ∃x(x + y = 1), the variable x is bound

by the existential quantification ∃x, but the variable y is free because it is

not bound by a quantifier and no value is assigned to this variable. This

illustrates that in the statement ∃x(x+ y = 1), x is bound, but y is free.

In the statement ∃x(P (x)∧Q(x))∨ ∀xR(x), all variables are bound.

The scope of the first quantifier, ∃x, is the expression P (x)∧Q(x) because

∃x is applied only to P (x) ∧ Q(x), and not to the rest of the statement.

Similarly, the scope of the second quantifier, ∀x, is the expression R(x).

That is, the existential quantifier binds the variable x in P (x)∧Q(x) and

the universal quantifier ∀x binds the variable x in R(x). Observe that we

could have written our statement using two different variables x and y, as

∃x(P (x)∧Q(x))∨ ∀yR(y), because the scopes of the two quantifiers do

not overlap. The reader should be aware that in common usage, the same

letter is often used to represent variables bound by different quantifiers

with scopes that do not overlap.

1.4. PREDICATES AND QUANTIFIERS 47

1.4.6 Negating Quantified Expressions

The rules for negations for quantifiers are called De Morgans laws for

quantifiers. These rules are summarized in Table 1.18.

Table 1.18: De Morgan’s Laws for Quantifiers.

Negation Equivalent When Is Negation When False?

Statement True?

¬∃xP (x) ∀x¬P (x) For every x, There is an x

P (x) is false. for which P (x) is true.

¬∀xP (x) ∃x¬P (x) There is an x P (x) is true

for which P (x) is false. for every x.

Example 61. What are the negations of the statements ∀x(x2 > x) and

∃x(x2 = 2)?

Solution: The negation of ∀x(x2 > x) is the statement ¬∀x(x2 > x),

which is equivalent to ∃x¬(x2 > x). This can be rewritten as ∃x(x2 ≤ x).

The negation of ∃x(x2 = 2) is the statement ¬∃x(x2 = 2), which is

equivalent to ∀x¬(x2 = 2). This can be rewritten as ∀x(x2 = 2). The

truth values of these statements depend on the domain.

Example 62. Show that ¬∀x(P (x) → Q(x)) and ∃x(P (x)∧¬Q(x)) are

logically equivalent.

Solution: By De Morgans law for universal quantifiers, we know that

¬∀x(P (x) → Q(x)) and ∃x(¬(P (x) → Q(x))) are logically equivalent.

By the fifth logical equivalence, we know that ¬(P (x) → Q(x)) and

48 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

P (x) ∧ ¬Q(x) are logically equivalent for every x. Because we can sub-

stitute one logically equivalent expression for another in a logical equiv-

alence, it follows that¬∀x(P (x) → Q(x)) and ∃x(P (x) ∧ ¬Q(x)) are

logically equivalent.

Let Us Sum Up

In this section, we discussed about

∗ Predicates.

∗ Quantifiers.

∗ Quantifiers over finite domains.

∗ Predence of quantifiers.

Check your Progress

1. Let P (x) denote the statement x > 3. What is truth value of P (4)?

(a) True

(b) False

(c) neither true nor false

(d) no truth value

2. Let Q(x) denote the statement x = x + 1. What is the truth value of

∃xQ(x)?

(a) True

(b) False

1.5. PROOF METHODS AND STRATEGY 49

(c) neither true nor false

(d) no truth value

3. The part of a logical expression to which a quantifier is applied is called

(a) Universal quantifier

(b) Uniqueness quantifier

(c) Scope of a quantifier

(d) a formula

1.5 Proof Methods and Strategy

1.5.1 Exhaustive Proof and Proof by Cases

Exhaustive Proof

Some theorems can be proved by examining a relatively small number

of examples. Such proofs are called exhaustive proofs, or proofs by

exhaustion because these proofs proceed by exhausting all possibilities.

Example 63. Prove that (n + 1)3 ≥ 3n if n is a positive integer with

n ≤ 4.

Solution: We use a proof by exhaustion. We only need verify the inequal-

ity (n+1)3 ≥ 3n when n = 1, 2, 3, and 4. For n = 1, we have (n+1)3 =

23 = 8 and 3n = 31 = 3; for n = 2, we have (n + 1)3 = 33 = 27 and

3n = 32 = 9; for n = 3, we have (n + 1)3 = 43 = 64 and 3n = 33 = 27;

and for n = 4, we have (n + 1)3 = 53 = 125 and 3n = 34 = 81. In each

of these four cases, we see that (n+ 1)3 ≥ 3n. We have used the method

50 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

of exhaustion to prove that (n + 1)3 ≥ 3n if n is a positive integer with

n ≤ 4.

Example 64. Prove that the only consecutive positive integers not exceed-

ing 100 that are perfect powers are 8 and 9. (An integer n is a perfect

power if it equals ma, where m is an integer and a is an integer greater

than 1.)

Solution: We use a proof by exhaustion. In particular, we can prove this

fact by examining positive integers n not exceeding 100, first checking

whether n is a perfect power, and if it is, checking whether n + 1 is also

a perfect power. A quicker way to do this is simply to look at all perfect

powers not exceeding 100 and checking whether the next largest integer

is also a perfect power. The squares of positive integers not exceeding

100 are 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100. The cubes of positive inte-

gers not exceeding 100 are 1, 8, 27, and 64. The fourth powers of positive

integers not exceeding 100 are 1, 16, and 81. The fifth powers of positive

integers not exceeding 100 are 1 and 32. The sixth powers of positive

integers not exceeding 100 are 1 and 64. There are no powers of posi-

tive integers higher than the sixth power not exceeding 100, other than

1. Looking at this list of perfect powers not exceeding 100, we see that

n = 8 is the only perfect power n for which n+ 1 is also a perfect power.

That is, 23 = 8 and 32 = 9 are the only two consecutive perfect powers

not exceeding 100.

Proof by Cases

A proof by cases must cover all possible cases that arise in a theorem.

Example 65. Prove that if n is an integer, then n2 ≥ n.

1.5. PROOF METHODS AND STRATEGY 51

Solution: We can prove that n2 ≥ n for every integer by considering

three cases, when n = 0, when n ≥ 1, and when n ≤ −1. We split the

proof into three cases because it is straightforward to prove the result by

considering zero, positive integers, and negative integers separately.

Case (i): When n = 0, because 02 = 0, we see that 02 ≥ 0. It follows

that n2 ≥ n is true in this case.

Case (ii): When n ≥ 1, when we multiply both sides of the inequality

n ≥ 1 by the positive integer n, we obtain n · n ≥ n · 1. This implies that

n2 ≥ n for n ≥ 1.

Case (iii): In this case n ≤ −1. However, n2 ≥ 0. It follows that n2 ≥ n.

Because the inequality n2 ≥ n holds in all three cases, we can conclude

that if n is an integer, then n2 ≥ n.

Example 66. Use a proof by cases to show that |xy| = |x||y|, where x

and y are real numbers. (Recall that |a|, the absolute value of a, equals a

when a ≥ 0 and equals −a when a ≤ 0.)

Solution: In our proof of this theorem, we remove absolute values using

the fact that |a| = a when a ≥ 0 and |a| = −a when a < 0. Because both

|x| and |y| occur in our formula, we will need four cases:

(i) x and y both nonnegative, (ii) x nonnegative and y is negative, (iii)

x negative and y nonnegative, and (iv) x negative and y negative. We

denote by p1, p2, p3, and p4, the proposition stating the assumption for

each of these four cases, respectively.

(Note that we can remove the absolute value signs by making the ap-

propriate choice of signs within each case.)

52 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

Case (i): We see that p1 → q because xy ≥ 0 when x ≥ 0 and y ≥ 0,

so that |xy| = xy = |x||y|.

Case (ii): To see that p2 → q, note that if x ≥ 0 and y < 0, then

xy ≤ 0, so that |xy| = −xy = x(−y) = |x||y|. (Here, because y < 0, we

have |y| = −y.)

Case (iii): To see that p3 → q, we follow the same reasoning as the

previous case with the roles of x and y reversed.

Case (iv): To see that p4 → q, note that when x < 0 and y < 0, it

follows that xy > 0. Hence, |xy| = xy = (−x)(−y) = |x||y|.

Because |xy| = |x||y| holds in each of the four cases and these cases

exhaust all possibilities, we can conclude that |xy| = |x||y|, whenever x

and y are real numbers. Many theorems are assertions that objects of a

particular type exist. A theorem of this type is a proposition of the form

∃ xP (x), where P is a predicate. A proof of a proposition of the form

∃xP (x) is called an existence proof. There are several ways to prove a

theorem of this type. Sometimes an existence proof of ∃xP (x) can be

given by finding an element a, called a witness, such that P (a) is true.

This type of existence proof is called constructive. It is also possible

to give an existence proof that is nonconstructive; that is, we do not

find an element a such that P (a) is true, but rather prove that ∃xP (x) is

true in some other way. One common method of giving a nonconstructive

existence proof is to use proof by contradiction and show that the negation

of the existential quantification implies a contradiction.

Example 67. A Constructive Existence Proof Show that there is a pos-

itive integer that can be written as the sum of cubes of positive integers in

two different ways.

Solution: After considerable computation (such as a computer search) we

1.5. PROOF METHODS AND STRATEGY 53

find that

1729 = 103 + 93 = 123 + 13.

Because we have displayed a positive integer that can be written as the

sum of cubes in two different ways, we are done.

There is an interesting story pertaining to this example. The English

mathematician G. H. Hardy, when visiting the ailing Indian prodigy Ra-

manujan in the hospital, remarked that 1729, the number of the cab he

took, was rather dull. Ramanujan replied “No, it is a very interesting

number; it is the smallest number expressible as the sum of cubes in two

different ways.”

Example 68. A Nonconstructive Existence Proof Show that there exist

irrational numbers x and y such that xy is rational.

Solution: we know that
√
2 is irrational. Consider the number

√
2
√
2
. If

it is rational, we have two irrational numbers x and y with xy rational,

namely, x =
√
2 and y =

√
2. On the other hand if

√
2
√
2

is irrational,

then we can let x =
√
2
√
2

and y =
√
2 so that xy =

(√
2
√
2
)√

2

=

√
2
(
√
2·
√
2)
=

√
2
2
= 2.

This proof is an example of a nonconstructive existence proof because

we have not found irrational numbers x and y such that xy is rational.

Rather, we have shown that either the pair x =
√
2, y =

√
2 or the pair

x =
√
2
√
2
, y =

√
2 have the desired property, but we do not know which

of these two pairs works!

1.5.2 Uniqueness Proofs

Some theorems assert the existence of a unique element with a particular

property. In other words, these theorems assert that there is exactly one

54 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

element with this property. To prove a statement of this type we need to

show that an element with this property exists and that no other element

has this property. The two parts of a uniqueness proof are:

Existence: We show that an element x with the desired property exists.

Uniqueness: We show that if x and y both have the desired property,

then x = y.

Remark 69. Showing that there is a unique element x such that P (x) is

the same as proving the statement ∃x(P (x) ∧ ∀y(y = x → ¬P (y))).

Example 70. Show that if a and b are real numbers and a = 0, then there

is a unique real number r such that ar + b = 0.

Solution: First, note that the real number r = −b/a is a solution of

ar + b = 0 because a(−b/a) + b = −b + b = 0. Consequently, a real

number r exists for which ar + b = 0. This is the existence part of the

proof.

Second, suppose that s is a real number such that as + b = 0. Then

ar + b = as + b, where r = −b/a. Subtracting b from both sides, we

find that ar = as. Dividing both sides of this last equation by a, which is

nonzero, we see that r = s. This means that if s = r, then as + b = 0.

This establishes the uniqueness part of the proof.

1.5.3 Proof Strategies

Forward and Backward Reasoning

Whichever method you choose, you need a starting point for your proof.

To begin a direct proof of a conditional statement, you start with the

premises. Using these premises, together with axioms and known the-

orems, you can construct a proof using a sequence of steps that leads

1.5. PROOF METHODS AND STRATEGY 55

to the conclusion. This type of reasoning, called forward reasoning, is

the most common type of reasoning used to prove relatively simple re-

sults. Similarly, with indirect reasoning you can start with the negation of

the conclusion and, using a sequence of steps, obtain the negation of the

premises.

Unfortunately, forward reasoning is often difficult to use to prove more

complicated results, because the reasoning needed to reach the desired

conclusion may be far from obvious. In such cases it may be helpful to

use backward reasoning.

Example 71. Given two positive real numbers x and y, their arithmetic

mean is (x + y)/2 and their geometric mean is
√
xy. When we com-

pare the arithmetic and geometric means of pairs of distinct positive real

numbers, we find that the arithmetic mean is always greater than the ge-

ometric mean. [For example, when x = 4 and y = 6, we have 5 =

(4 + 6)/2 >
√
4 · 6 =

√
24.] Can we prove that this inequality is always

true?

Solution: To prove that (x + y)/2 >
√
xy when x and y are distinct

positive real numbers, we can work backward. We construct a sequence

of equivalent inequalities. The equivalent inequalities are

(x+ y)/2 >
√
xy,

(x+ y)2/4 > xy,

(x+ y)2 > 4xy,

x2 + 2xy + y2 > 4xy,

x2 − 2xy + y2 > 0,

(x− y)2 > 0.

56 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

Because (x − y)2 > 0 when x 6= y, it follows that the final inequal-

ity is true. Because all these inequalities are equivalent, it follows that

(x + y)/2 >
√
xy when x 6= y. Once we have carried out this backward

reasoning, we can build a proof based on reversing the steps. This pro-

duces construct a proof using forward reasoning.

Backward reasoning

Proof: Suppose that x and y are distinct positive real numbers. Then

(x − y)2 > 0 because the square of a nonzero real number is positive.

Because (x− y)2 = x2 − 2xy + y2, this implies that x2 − 2xy + y2 > 0.

Adding 4xy to both sides, we obtain x2 + 2xy + y2 > 4xy. Because

x2+2xy+ y2 = (x+ y)2, this means that (x+ y)2 ≥ 4xy. Dividing both

sides of this equation by 4, we see that (x + y)2/4 > xy. Finally, taking

square roots of both sides (which preserves the inequality because both

sides are positive) yields (x + y)/2 >
√
xy. We conclude that if x and y

are distinct positive real numbers, then their arithmetic mean (x+ y)/2 is

greater than their geometric mean
√
xy.

1.5.4 Looking for Counterexamples

When confronted with a conjecture, you might first try to prove this con-

jecture, and if your attempts are unsuccessful, you might try to find a

counterexample, first by looking at the simplest, smallest examples. If

you cannot find a counterexample, you might again try to prove the state-

ment. In any case, looking for counterexamples is an extremely important

pursuit, which often provides insights into problems.

1.5. PROOF METHODS AND STRATEGY 57

Let Us Sum Up

In this section, we discussed about

∗ Exhaustive proofs and proof by cases.

∗ Existence proofs.

∗ Uniqueness proofs.

∗ Proof strategies.

∗ Looking for counter examples.

Check your Progress

1. Some theorems can be proved by examining a relatively small number

of examples. Such proof are called

(a) Existence proof

(b) Uniqueness proof

(c) Constructive proof

(d) Exhaustive proof

2. A proof of a proposition of the form ∃xP (x) is called

(a) Existence proof

(b) Uniqueness proof

(c) Constructive proof

(d) Exhaustive proof

58 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

1.6 The Growth of Functions

1.6.1 Big-O Notation

Definition 72. Let f and g be functions from the set of integers or the set

of real numbers to the set of real numbers. We say that f(x) is O(g(x)) if

there are constants C and k such that

|f(x)| ≤ C|g(x)|

whenever x > k. [This is read as “f(x) is big-oh of g(x).”]

Working with the Definition of Big-O-Notation

A useful approach for finding a pair of witnesses is to first select a value

of k for which the size of |f(x)| can be readily estimated when x > k

and to see whether we can use this estimate to find a value of C for which

|f(x)| ≤ C|g(x)| for x > k. This approach is illustrated in Example 73.

Example 73. Show that f(x) = x2 + 2x+ 1 is O(x2).

Solution: We observe that we can readily estimate the size of f(x) when

x > 1 because x < x2 and 1 < x2 when x > 1. It follows that

0 ≤ x2 + 2x+ 1 ≤ x2 + 2x2 + x2 = 4x2

whenever x > 1, as shown in Figure 1.4. Consequently, we can take

C = 4 and k = 1 as witnesses to show that f(x) is O(x2). That is,

f(x) = x2+2x+1 < 4x2 whenever x > 1. (Note that it is not necessary

to use absolute values here because all functions in these equalities are

positive when x is positive.)

1.6. THE GROWTH OF FUNCTIONS 59

Alternatively, we can estimate the size of f(x) when x > 2. When

x > 2, we have 2x ≤ x2 and 1 ≤ x2. Consequently, if x > 2, we have

Figure 1.4: The function x2 + 2x+ 1 is O(x2).

0 ≤ x2 + 2x+ 1 ≤ x2 + x2 + x2 = 3x2.

It follows that C = 3 and k = 2 are also witnesses to the relation f(x) is

O(x2).

Observe that in the relationship “f(x) is O(x2),” x2 can be replaced

by any function with larger values than x2. For example, f(x) is O(x3),

f(x) is O(x2 + x+ 7), and so on.

It is also true that x2 is O(x2 + 2x + 1), because x2 < x2 + 2x + 1

whenever x > 1. This means that C = 1 and k = 1 are witnesses to the

relationship x2 is O(x2 + 2x+ 1).

Example 74. Show that 7x2 is O(x3).

60 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

Solution: : Note that when x > 7, we have 7x2 < x3. (We can obtain

this inequality by multiplying both sides of x > 7 by x2.) Consequently,

we can take C = 1 and k = 7 as witnesses to establish the relationship

7x2 is O(x3). Alternatively, when x > 1, we have 7x2 < 7x3, so that

C = 7 and k = 1 are also witnesses to the relationship 7x2 is O(x3).

Example 75. Show that n2 is not O(n).

Solution: To show that n2 is not O(n), we must show that no pair of

witnesses C and k exist such that n2 ≤ Cn whenever n > k. We will use

a proof by contradiction to show this.

Suppose that there are constants C and k for which n2 ≤ Cn whenever

n > k. Observe that when n > 0 we can divide both sides of the inequal-

ity n2 ≤ Cn by n to obtain the equivalent inequality n ≤ C. However,

no matter what C and k are, the inequality n ≤ C cannot hold for all n

with n > k. In particular, once we set a value of k, we see that when n

is larger than the maximum of k and C, it is not true that n ≤ C even

though n > k. This contradiction shows that n2 in not O(n).

Example 76. Whether x3 is O(7x2)?

Solution: To determine whether x3 is O(7x2), we need to determine

whether witnesses C and k exist, so that x3 ≤ C(7x2) whenever x > k.

We will show that no such witnesses exist using a proof by contradiction.

If C and k are witnesses, the inequality x3 ≤ C(7x2) holds for all

x > k. Observe that the inequality x3 ≤ C(7x2) is equivalent to the

inequality x ≤ 7C, which follows by dividing both sides by the positive

quantity x2. However, no matter what C is, it is not the case that x ≤ 7C

for all x > k no matter what k is, because x can be made arbitrarily

large. It follows that no witnesses C and k exist for this proposed big-O

relationship. Hence, x3 is not O(7x2).

1.6. THE GROWTH OF FUNCTIONS 61

1.6.2 Big-O Estimates for Some Important Functions

Theorem 77. Let f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0, where

a0, a1, · · · , an−1, an are real numbers. Then f(x) is O(xn).

Proof. Using the triangle inequality, if x > 1 we have

|f(x)| = |anxn + an−1x
n−1 + · · ·+ a1x+ a0|

≤ |an|xn + |an−1|xn−1 + · · ·+ |a1|x+ |a0|

= xn(|an|+ |an−1|/x+ · · ·+ |a1|/xn−1 + |a0|/xn)

≤ xn(|an|+ |an−1|+ · · ·+ |a1|+ |a0|).

This shows that

|f(x)| ≤ Cxn.

where C = |an|+|an−1|+· · ·+|a0| whenever x > 1. Hence, the witnesses

C = |an|+ |an−1|+ · · ·+ |a0| and k = 1 show that f(x) is O(xn).

Example 78. How can big-O notation be used to estimate the sum of the

first n positive integers?

Solution: Because each of the integers in the sum of the first n positive

integers does not exceed n, it follows that

1 + 2 + · · ·+ n ≤ n+ n+ · · ·+ n = n2.

From this inequality it follows that 1 + 2 + 3 + · · · + n is O(n2), taking

C = 1 and k = 1 as witnesses. (In this example the domains of the

functions in the big-O relationship are the set of positive integers.)

In Example 79 big-O estimates will be developed for the factorial func-

tion and its logarithm. These estimates will be important in the analysis

of the number of steps used in sorting procedures.

62 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

Example 79. Give big-O estimates for the factorial function and the log-

arithm of the factorial function, where the factorial function f(n) = n! is

defined by

n! = 1 · 2 · 3 · · · · · n

whenever n is a positive integer, and 0! = 1. For example,

1! = 1, 2! = 1 · 2 = 2, 3! = 1 · 2 · 3 = 6, 4! = 1 · 2 · 3 · 4 = 24.

Note that the function n! grows rapidly. For instance,

20! = 2, 432, 902, 008, 176, 640, 000.

Solution: A big-O estimate for n! can be obtained by noting that each

term in the product does not exceed n. Hence,

n! = 1 · 2 · 3 · · · · · n

≤ n · n · n · · · · · n

= nn.

This inequality shows that n! is O(nn), taking C = 1 and k = 1 as

witnesses. Taking logarithms of both sides of the inequality established

for n!, we obtain

log n! ≤ lognn = n log n.

This implies that log n! is O(n log n), again taking C = 1 and k = 1 as

witnesses.

Example 80. Arrange the functions f1(n) = 8
√
n, f2(n) = (log n)2,

f3(n) = 2n log n, f4(n) = n!, f5(n) − (1.1)n, and f6(n) = n2 in a list

1.6. THE GROWTH OF FUNCTIONS 63

so that each function is big-O of the next function.

Solution: From the bog-O estimates described in this subsection, we see

that f2(n) = (log n)2 is the slowest growing of these functions. (This

follows because log n grows slower than any positive power of n.) The

next three functions, in order, are f1(n) = 8
√
n, f2(n) = (log n)2,

f3(n) = 2n log n and f6(n) = n2. (We know this because f1(n) = 8n1/2,

f3(n) = 2n log n is a function that grows faster than n but slower than

nc for every c > 1, and f6(n) = n2 is of the form nc where c = 2.) The

next function in the list is f5(n) = (.1.1)n, because it is an exponential

function with base 1.1. Finally, f4(n) = n! is the faster growing function

on the list, because f(n) = n! grows faster than any exponential function

of n.

Example 81. Give a big-O estimate for f(n) = 3nlog(n!)+(n2+3)log n,

where n is a positive integer.

Solution: First, the product 3n log(n!) will be estimated. From Example

73 we know that log(n!) is O(n logn). Using this estimate and the fact

that 3n is O(n), 3nlog(n!) is O(n2logn).

Next, the product (n2 +3)logn will be estimated. Because (n2 +3) <

2n2 when n > 2, it follows that n2 + 3 is O(n2). Thus, it follows that

(n2 + 3)logn is O(n2logn). To combine the two big-O estimates for the

products shows that f(n) = 3nlog(n!) + (n2 + 3)logn is O(n2logn).

Example 82. Give a big-O estimate for f(x) = (x+1)log(x2+1)+3x2.

Solution: First, a big-O estimate for (x + 1)log(x2 + 1) will be found.

Note that (x+ 1) is O(x).

Furthermore, x2 + 1 ≤ 2x2 when x > 1. Hence,

log(x2 + 1) ≤ log(2x2) = log2 + logx2 = log 2 + 2log x ≤ 3 logx,

64 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

if x > 2. This shows that log(x2 + 1) is O(logx).

It follows that (x + 1)log(x2 + 1) is O(x logx). Because 3x2 is

O(x2),we know that f(x) is O(max(x logx, x2)). Because x logx ≤ x2,

for x > 1, it follows that f(x) is O(x2).

1.6.3 Big-Omega and Big-Theta Notation

Big-O notation is used extensively to describe the growth of functions,

but it has limitations. In particular, when f(x) is O(g(x)), we have an

upper bound, in terms of g(x), for the size of f(x) for large values of x.

However, big-O notation does not provide a lower bound for the size of

f(x) for large x. For this, we use big-Omega (big-Ω) notation. When

we want to give both an upper and a lower bound on the size of a func-

tion f(x), relative to a reference function g(x), we use big-Theta (big-Θ)

notation. Both big-Omega and big-Theta notation were introduced by

Donald Knuth in the 1970s. His motivation for introducing these nota-

tions was the common misuse of big-O notation when both an upper and

a lower bound on the size of a function are needed. We now define big-

Omega notation and illustrate its use. After doing so, we will do the same

for big-Theta notation.

Definition 83. Let f and g be functions from the set of integers or the set

of real numbers to the set of real numbers. We say that f(x) is Ω(g(x)) if

there are positive constants C and k such that

|f(x)| ≥ C|g(x)|

whenever x > k. [This is read as “f(x) is big-Omega of g(x).”]

Example 84. The function f(x) = 8x3 + 5x2 + 7 is Ω(g(x)), where

1.6. THE GROWTH OF FUNCTIONS 65

g(x) is the function g(x) = x3. This is easy to see because f(x) =

8x3 + 5x2 + 7 ≥ 8x3 for all positive real numbers x. This is equivalent

to saying that g(x) = x3 is O(8x3 + 5x2 + 7), which can be established

directly by turning the inequality around.

Definition 85. Let f and g be functions from the set of integers or the set

of real numbers to the set of real numbers. We say that f(x) is Θ(g(x)) if

f(x) is O(g(x)) and f(x) is Ω(g(x)). When f(x) is Θ(g(x)) we say that

f is big-Theta of g(x), that f(x) is of order g(x), and that f(x) and g(x)

are of the same order.

Example 86. Show that 3x2 + 8x logx is Θ(x2).

Solution: Because 0 ≤ 8x log x ≤ 8x2, it follows that 3x2 +8x log x ≤

11x2 for x > 1. Consequently, 3x2 + 8x log x is O(x2). Clearly, x2 is

O(3x2 + 8x logx). Consequently, 3x2 + 8x log x is Θ(x2).

Let us Sum Up

In this section, we discussed about

∗ Big-O-Notation.

∗ Big -O-estimates for some important functions.

∗ Big-Omega and Big-Theta Notation.

Check your Progress

1. An advantage of big-O notation is

(a) to write algorithms

66 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

(b) to estimate growth of a function

(c) to find combinations of functions

(d) to find bounds of functions

2. The big-O estimate of f(x) = (x+ 1) log(x2 + 1) + 3x2 is

(a) O(log x)

(b) O(x4)

(c) O(x2 + log x)

(d) O(x2)

Summary

In this unit, we discussed about

∗ Propositional logic.

∗ Applications of Propositional logic.

∗ Propositional equivalences.

∗ Predicates and quantifiers.

∗ Proof methods and strategy.

∗ The growth of functions.

1.6. THE GROWTH OF FUNCTIONS 67

Glossary

proposition: a statement that is true or false.

propositional variable: a variable that represents a proposition.

truth value: true or false.

bit: either a 0 or a 1.

bit string: a list of bits.

tautology: a compound proposition that is always true.

contradiction: a compound proposition that is always false.

free variable: a variable not bound in a propositional function.

bound variable: a variable that is quantified.

scope of quantifiers: portion of a statement where the quantifier binds

its variable.

argument: a sequence of statements.

Self Assessment Questions

1. Define (using truth tables) the disjunction, conjunction, exclusive or,

conditional, and biconditional of the propositions p and q.

2. Describe at least five different ways to write the conditional state-

ment p ↔ q in English.

3. Describe a way to prove the biconditional p ↔ q.

4. What is the difference between a constructive and non-constructive

existence proof? Give an example of each.

5. What are the elements of a proof that there is a unique element x

such that P (x), where P (x) is a propositional function?

68 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

Exercises

1. Find the truth table of the compound proposition (p ∨ q) → (p∧ ⇁

r).

2. Prove or disprove that if x2 is irrational, then x3 is irrational.

3. Prove that given a nonegative integer n, there is a unique nonnegative

integer m such that m2 ≤ n ≤ (m+ 1)2.

4. Disprove the statement that every positive integer is the sum of the

cubes of eight nonegative integers.

5. Show that (n log n+ n2)3 is O(n6).

Answers to Check your Progress

Section 1.1: 1)a 2)c 3) d

Section 1.2: 1)b 2)a

Section 1.3: 1)b 2)c

Section 1.4: 1)a 2)b 3)c

Section 1.5: 1)d 2)a

Section 1.6: 1)b 2)c

Reference:

1. Kenneth H. Rosen, “Discrete Mathematics and its Applications”, 7th

Edition, WCB/ McGraw Hill Publications, New Delhi, 2011.

1.6. THE GROWTH OF FUNCTIONS 69

Suggested Readings:

1. Edward A. Bender and S. Gill Williamson, “A Short Course in Dis-

crete Mathematics”, Dover Publications, 2006.

2. M.O. Albertson and J.P. Hutchinson, “Discrete Mathematics with

Algorithms”, John Wiley & Sons, 2008.

3. Rajendra Akerkar and Rupali Akarkar, “Discrete Mathematics”, Pear-

son Education Pvt. Ltd, Singapore, 2004.

4. J. P. Trembley and R. Manohar, “Discrete Mathematical Structures”,

Tata McGraw Hill, New Delhi,1997.

5. Martin Aigner, “A Course in Enumeration”, Springer-Verlag, Hei-

delberg, 2007.

6. J.H. Van Lint and R.M. Wilson, “A Course in Combinatorics”, 2nd

Edition, Cambridge University Press, Cambridge, 2001.

70 UNIT 1. LOGIC, PROOFS AND ALGORITHMS

Unit 2

Counting

Objectives

1. To introduce the basic techniques of counting.

2. To illustrate the usefulness of the pigeohole principle.

3. To learn permutations and combinations and to apply them to answer

counting problems.

4. To introduce the idea of generalized permutations and combinations

to solve problems when repetition of elements is allowed.

2.1 The Basics of Counting

2.1.1 Basic Counting Principles

We first present two basic counting principles, the product rule and the

sum rule. Then we will show how they can be used to solve many differ-

ent counting problems.

The product rule applies when a procedure is made up of separate

tasks.

71

72 UNIT 2. COUNTING

The Product Rule: Suppose that a procedure can be broken down into a

sequence of two tasks. If there are n1 ways to do the first task and for each

of these ways of doing the first task, there are n2 ways to do the second

task, then there are n1n2 ways to do the procedure.

Example 87. A new company with just two employees, Sanchez and Patel,

rents a floor of a building with 12 offices. How many ways are there to

assign different offices to these two employees?

Solution: The procedure of assigning offices to these two employees

consists of assigning an office to Sanchez, which can be done in 12 ways,

then assigning an office to Patel different from the office assigned to

Sanchez, which can be done in 11 ways. By the product rule, there are

12 · 11 = 132 ways to assign offices to these two employees.

Example 88. The chairs of an auditorium are to be labeled with an up-

percase English letter followed by a positive integer not exceeding 100.

What is the largest number of chairs that can be labeled differently?

Solution: The procedure of labeling a chair consists of two tasks, namely,

assigning to the seat one of the 26 uppercase English letters, and then as-

signing to it one of the 100 possible integers. The product rule shows

that there are 26 · 100 = 2600 different ways that a chair can be labeled.

Therefore, the largest number of chairs that can be labeled differently is

2600.

Example 89. There are 32 computers in a data center in the cloud. Each

of these computers has 24 ports. How many different computer parts are

there in this data center?

Solution: : The procedure of choosing a port consists of two tasks, first

picking a microcomputer and then picking a port on this microcomputer.

2.1. THE BASICS OF COUNTING 73

Because there are 32 ways to choose the microcomputer and 24 ways to

choose the port no matter which microcomputer has been selected, the

product rule shows that there are 32 · 24 = 768 ports.

An extended version of the product rule is often useful. Suppose that

a procedure is carried out by performing the tasks T1, T2, · · · , Tm in se-

quence. If each task Ti, i = 1, 2, · · · , n, can be done in ni ways, regard-

less of how the previous tasks were done, then there are n1 · n2 · · · · · nm

ways to carry out the procedure. This version of the product rule can be

proved by mathematical induction from the product rule for two tasks.

Example 90. How many different bit strings of length seven are there?

Solution: Each of the seven bits can be chosen in two ways, because

each bit is either 0 or 1. Therefore, the product rule shows there are a total

of 27 = 128 different bit strings of length seven.

Example 91. How many different license plates can be made if each plate

contains a sequence of three upper-case English letters followed by three

digits (and no sequences of letters are prohibited, even if they are ob-

scene)?

Solution: There are 26 choices for each of the three upper-case English

letters and ten choices for each of the three digits. Hence, by the product

rule there are a total of 26 · 26 · 26 · 10 · 10 · 10 = 17, 576, 000 possible

license plates.

Example 92. Counting Functions How many functions are there from a

set with m elements to a set with n elements?

Solution: A function corresponds to a choice of one of the n elements

in the codomain for each of the m elements in the domain. Hence, by the

74 UNIT 2. COUNTING

product rule there are n · n · · · · · n = nm functions from a set with m el-

ements to one with n elements. For example, there are 53 = 125 different

functions from a set with three elements to a set with five elements.

Example 93. Counting One-to-One Functions How many one-to-one

functions are there from a set with m elements to one with n elements?

Solution: First note that when m > n there are no one-to-one functions

from a set with m elements to a set with n elements.

Now let m ≤ n. Suppose the elements in the domain are a1, a2, · · · , am.

There are n ways to choose the value of the function at a1. Because the

function is one-to-one, the value of the function at a2 can be picked in

n− 1 ways (because the value used for a1 cannot be used again). In gen-

eral, the value of the function at ak can be chosen in n− k + 1 ways. By

the product rule, there are n(n − 1)(n − 2) · · · (n − m + 1) one-to-one

functions from a set with m elements to one with n elements.

For example, there are 5 · 4 · 3 = 60 one-to-one functions from a set

with three elements to a set with five elements.

Example 94. What is the value of k after the following code, where

n1, n2, · · · , nm are positive integers, has been executed?

Solution: The initial value of k is zero. Each time the nested loop is

traversed, 1 is added to k. Let Ti be the task of traversing the ith loop.

2.1. THE BASICS OF COUNTING 75

Then the number of times the loop is traversed is the number of ways to

do the tasks T1, T2, · · · , Tm. The number of ways to carry out the task

Tj, j = 1, 2, · · · ,m, is nj , because the jth loop is traversed once for

each integer ij with 1 ≤ ij ≤ nj . By the product rule, it follows that the

nested loop is traversed n1n2 · · ·nm times. Hence, the final value of k is

n1n2 · · ·nm.

Example 95. Counting Subsets of a Finite Set Use the product rule to

show that the number of different subsets of a finite set S is 2|S|.

Solution: Let S be a finite set. List the elements of S in arbitrary order.

There is a one-to-one correspondence between subsets of S and bit strings

of length |S|. Namely, a subset of S is associated with the bit string with

a 1 in the ith position if the ith element in the list is in the subset, and a 0

in this position otherwise. By the product rule, there are 2|S| bit strings of

length |S|. Hence, |P (S)| = 2|S|.

The product rule is often phrased in terms of sets in this way: If

A1, A2, · · · , Am are finite sets, then the number of elements in the Carte-

sian product of these sets is the product of the number of elements in each

set. To relate this to the product rule, note that the task of choosing an

element in the Cartesian product A1×A2×· · ·×Am is done by choosing

an element in A1, an element in A2, · · · , and an element in Am. By the

product rule it follows that

|A1 × A2 × · · · × Am| = |A1| · |A2| · · · · · |Am|.

The Sum Rule: If a task can be done either in one of n1 ways or in one

of n2 ways, where none of the set of n1 ways is the same as any of the set

of n2 ways, then there are n1 + n2 ways to do the task.

Example 96. Suppose that either a member of the mathematics faculty

76 UNIT 2. COUNTING

or a student who is a mathematics major is chosen as a representative

to a university committee. How many different choices are there for this

representative if there are 37 members of the mathematics faculty and 83

mathematics majors and no one is both a faculty member and a student?

Solution: There are 37 ways to choose a member of the mathematics

faculty and there are 83 ways to choose a student who is a mathematics

major. Choosing a member of the mathematics faculty is never the same

as choosing a student who is a mathematics major because no one is both

a faculty member and a student. By the sum rule it follows that there are

37 + 83 = 120 possible ways to pick this representative.

We can extend the sum rule to more than two tasks. Suppose that a

task can be done in one of n1 ways, in one of n2 ways, · · · , or in one of

nm ways, where none of the set of ni ways of doing the task is the same as

any of the set of nj ways, for all pairs i and j with 1 ≤ i < j ≤ m. Then

the number of ways to do the task is n1 + n2 + · · · + nm. This extended

version of the sum rule is often useful in counting problems. This version

of the sum rule can be proved using mathematical induction from the sum

rule for two sets.

Example 97. A student can choose a computer project from one of three

lists. The three lists contain 23, 15, and 19 possible projects, respectively.

No project is on more than one list. How many possible projects are there

to choose from?

Solution: The student can choose a project by selecting a project from

the first list, the second list, or the third list. Because no project is on more

than one list, by the sum rule there are 23+ 15+ 19 = 57 ways to choose

a project.

2.1. THE BASICS OF COUNTING 77

Example 98. What is the value of k after the following code, where

n1, n2, · · · , nm are positive integers, has been executed?

Solution: The initial value of k is zero. This block of code is made

up of m different loops. Each time a loop is traversed, 1 is added to k.

To determine the value of k after this code has been executed, we need

to determine how many times we traverse a loop. Note that there are ni

ways to traverse the ith loop. Because we only traverse one loop at a time,

the sum rule shows that the final value of k, which is the number of ways

to traverse one of the m loops is n1 + n2 + · · ·+ nm.

The sum rule can be phrased in terms of sets as: If A1, A2, · · · , Am

are pairwise disjoint finite sets, then the number of elements in the union

of these sets is the sum of the numbers of elements in the sets. To relate

this to our statement of the sum rule, note there are |Ai| ways to choose

an element from Ai for i = 1, 2, · · · ,m. Because the sets are pairwise

disjoint, when we select an element from one of the sets Ai, we do not

also select an element from a different set Aj . Consequently, by the sum

rule, because we cannot select an element from two of these sets at the

same time, the number of ways to choose an element from one of the sets,

78 UNIT 2. COUNTING

which is the number of elements in the union, is

|A1∪A2∪· · ·∪Am| = |A1|+|A2|+· · ·+|Am| when Ai∩Aj = for all i, j.

This equality applies only when the sets in question are pairwise disjoint.

2.1.2 The Subtraction Rule (Inclusion-Exclusion for Two Sets)

The Subtraction Rule: If a task can be done in either n1 ways or n2

ways, then the number of ways to do the task is n1+n2 minus the number

of ways to do the task that are common to the two different ways.

The subtraction rule is also known as the principle of inclusion-exclusion,

especially when it is used to count the number of elements in the union

of two sets. Suppose that A1 and A2 are sets. Then, there are |A1| ways

to select an element from A1 and |A2| ways to select an element from A2.

The number of ways to select an element from A1 or from A2, that is, the

number of ways to select an element from their union, is the sum of the

number of ways to select an element from A1 and the number of ways to

select an element from A2, minus the number of ways to select an element

that is in both A1 and A2. Because there are |A1 ∪ A2| ways to select an

element in either A1 or in A2, and |A1 ∩ A2| ways to select an element

common to both sets, we have

|A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2|.

Example 99. How many bit strings of length eight either start with a 1

bit or end with the two bits 00?

Solution: Figure 1 illustrates the three counting problems we need to

solve before we can apply the principle of inclusion-exclusion.

2.1. THE BASICS OF COUNTING 79

Figure 2.1: Strings starting with 1 or ending with 00

We can construct a bit string of length eight that either starts with a

1 bit or ends with the two bits 00, by constructing a bit string of length

eight beginning with a 1 bit or by constructing a bit string of length eight

that ends with the two bits 00. We can construct a bit string of length

eight that begins with a 1 in 27 = 128 ways. This follows by the product

rule, because the first bit can be chosen in only one way and each of the

other seven bits can be chosen in two ways. Similarly, we can construct

a bit string of length eight ending with the two bits 00, in 26 = 64 ways.

This follows by the product rule, because each of the first six bits can be

chosen in two ways and the last two bits can be chosen in only one way.

Some of the ways to construct a bit string of length eight starting with a

1 are the same as the ways to construct a bit string of length eight that ends

with the two bits 00. There are 25 = 32 ways to construct such a string.

This follows by the product rule, because the first bit can be chosen in

only one way, each of the second through the sixth bits can be chosen in

two ways, and the last two bits can be chosen in one way. Consequently,

the number of bit strings of length eight that begin with a 1 or end with

a 00, which equals the number of ways to construct a bit string of length

80 UNIT 2. COUNTING

eight that begins with a 1 or that ends with 00, equals 128+64−32 = 160.

Example 100. A computer company receives 350 applications from com-

puter graduates for a job planning a line of new Web servers. Suppose

that 220 of these applicants majored in computer science, 147 majored

in business, and 51 majored both in computer science and in business.

How many of these applicants majored neither in computer science nor

in business?

Solution: To find the number of these applicants who majored neither in

computer science nor in business, we can subtract the number of students

who majored either in computer science or in business (or both) from the

total number of applicants. Let A1 be the set of students who majored

in computer science and A2 the set of students who majored in business.

Then A1 ∪ A2 is the set of students who majored in computer science or

business (or both), and A1∩A2 is the set of students who majored both in

computer science and in business. By the subtraction rule the number of

students who majored either in computer science or in business (or both)

equals

|A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2| = 220 + 147− 51 = 316.

We conclude that 350 − 316 = 34 of the applicants majored neither in

computer science nor in business. A venn diagram for this example is

shown in Figure 2.

2.1.3 The Division Rule

The Division Rule: There are n/d ways to do a task if it can be done

using a procedure that can be carried out in n ways, and for every way w,

2.1. THE BASICS OF COUNTING 81

Figure 2.2: Applicants who majored in neither computer science nor busi-
ness

exactly d of the n ways correspond to way w.

Example 101. Suppose that an automated system has been developed that

counts the legs of cows in a pasture. Suppose that this system has deter-

mined that in a farmer’s pasture there are exactly 572 legs. How many

cows are there is thus pasture, assuming that each cow has four legs and

that there are no other animals present?

Solution: Let n be the number of cow legs counted in a pasture. Be-

cause each cow has four legs, by the division rule we know that the pas-

ture contains n/4 cows. Consequently, the pasture with 572 cow legs has

572/4 = 143 cows in it.

Example 102. How many different ways are there to seat four people

around a circular table, where two seatings are considered the same when

each person has the same left neighbor and the same right neighbor?

Solution: We arbitrarily select a seat at the table and label it seat 1.

We number the rest of the seats in numerical order, proceeding clockwise

around the table. Note that are four ways to select the person for seat 1,

three ways to select the person for seat 2, two ways to select the person

82 UNIT 2. COUNTING

for seat 3, and one way to select the person for seat 4. Thus, there are

4! = 24 ways to order the given four people for these seats. However,

each of the four choices for seat 1 leads to the same arrangement, as we

distinguish two arrangements only when one of the people has a different

immediate left or immediate right neighbor. Because there are four ways

to choose the person for seat 1, by the division rule there are 24/4 = 6

different seating arrangements of four people around the circular table.

Example 103. Suppose that “I Love New Jersey” T-shirts come in five

different sizes: S, M, L, XL, and XXL. Further suppose that each size

comes in four colors, white, red, green, and black, except for XL, which

comes only in red, green, and black, and XXL, which comes only in green

and black. How many different shirts does a souvenir shop have to stock

to have at least one of each available size and color of the T-shirt?

Solution: The tree diagram in Figure 3 displays all possible size and

color pairs. It follows that the souvenir shop owner needs to stock 17

different T-shirts.

Figure 2.3: Counting varieties of T-shirts

2.1. THE BASICS OF COUNTING 83

Let Us Sum Up

In this section, we discussed about

∗ Basic counting principles.

∗ The subtraction rule.

∗ The division rule.

Check your Progress

1. How many different bit strings of length seven are there?

(a) 28

(b) 100

(c) 120

(d) 128

2. The subtraction rule is also known as

(a) principle of inclusion-exclusion

(b) principle of counting

(c) pigeonhole principle

(d) the division rule

84 UNIT 2. COUNTING

2.2 The Pigeonhole Principle

2.2.1 Introduction

Suppose that a flock of 20 pigeons flies into a set of 19 pigeonholes to

roost. Because there are 20 pigeons but only 19 pigeonholes, a least one

of these 19 pigeonholes must have at least two pigeons in it. To see why

this is true, note that if each pigeonhole had at most one pigeon in it, at

most 19 pigeons, one per hole, could be accommodated. This illustrates

a general principle called the pigeonhole principle, which states that if

there are more pigeons than pigeonholes, then there must be at least one

pigeonhole with at least two pigeons in it.

Theorem 104. [The Pigeonhole Principle] If k is a positive integer and

k + 1 or more objects are placed into k boxes, then there is at least one

box containing two or more of the objects.

Proof. We prove the pigeonhole principle using a proof by contraposition.

Suppose that none of the k boxes contains more than one object. Then

the total number of objects would be at most k. This is a contradiction,

because there are at least k + 1 objects.

Corollary 105. A function f from a set with k + 1 or more elements to a

set with k elements is not one-to-one.

Proof. Suppose that for each element y in the codomain of f we have a

box that contains all elements x of the domain of f such that f(x) = y.

Because the domain contains k + 1 or more elements and the codomain

contains only k elements, the pigeonhole principle tells us that one of

these boxes contains two or more elements x of the domain. This means

that f cannot be one-to-one.

2.2. THE PIGEONHOLE PRINCIPLE 85

Example 106. How many students must be in a class to guarantee that at

least two students receive the same score on the final exam, if the exam is

graded on a scale from 0 to 100 points?

Solution: There are 101 possible scores on the final. The pigeonhole prin-

ciple shows that among any 102 students there must be at least 2 students

with the same score.

Example 107. Show that for every integer n there is a multiple of n that

has only 0s and 1s in its decimal expansion.

Solution: Let n be a positive integer. Consider the n + 1 integers

1, 11, 111, · · · , 11 · · · 1 (where the last integer in this list is the integer

with n + 1 1s in its decimal expansion). Note that there are n possible

remainders when an integer is divided by n. Because there are n + 1 in-

tegers in this list, by the pigeonhole principle there must be two with the

same remainder when divided by n. The larger of these integers less the

smaller one is a multiple of n, which has a decimal expansion consisting

entirely of 0s and 1s.

2.2.2 The Generalized Pigeonhole Principle

Theorem 108. The Generalized Pigeonhole Principle If N objects are

placed into k boxes, then there is at least one box containing at least

dN/ke objects.

Proof. We will use a proof by contraposition. Suppose that none of the

boxes contains more than dN/ke − 1 objects. Then, the total number of

objects is at most

k

(
dN
k
e − 1

)
< k

((
N

k
+ 1

)
− 1

)
= N,

86 UNIT 2. COUNTING

where the inequality dN/ke < (N/k) + 1 has been used. This is a con-

tradiction because there are a total of N objects.

Example 109. What is the minimum number of students required in a

discrete mathematics class to be sure that at least six will receive the

same grade, if there are five possible grades, A, B, C, D, and F?

Solution: The minimum number of students needed to ensure that at

least six students receive the same grade is the smallest integer N such

that dN/5e = 6. The smallest such integer is N = 5 · 5 + 1 = 26. If you

have only 25 students, it is possible for there to be five who have received

each grade so that no six students have received the same grade. Thus,

26 is the minimum number of students needed to ensure that at least six

students will receive the same grade.

Example 110. What is the least number of area codes needed to guaran-

tee that the 25 million phones in a state can be assigned distinct 10-digit

telephone numbers? (Assume that telephone numbers are of the form

NXX-NXX-XXXX, where the first three digits form the area code, N repre-

sents a digit from 2 to 9 inclusive, and X represents any digit.)

Solution: There are eight million different phone numbers of the form

NXX-XXXX. Hence, by the generalized pigeonhole principle, among 25

million telephones, at least d25, 000, 000/8, 000, 000e = 4 of them must

have identical phone numbers. Hence, at least four area codes are required

to ensure that all 10-digit numbers are different.

2.2.3 Some Elegant Applications of the Pigeonhole Principle

Example 111. During a month with 30 days, a baseball team plays at

least one game a day, but no more than 45 games. Show that there must

2.2. THE PIGEONHOLE PRINCIPLE 87

be a period of some number of consecutive days during which the team

must play exactly 14 games.

Solution: Let aj be the number of games played on or before the jth day

of the month. Then a1, a2, · · · , a30 is an increasing sequence of distinct

positive integers, with 1 ≤ aj ≤ 45. Moreover, a1+14, a2+14, · · · , a30+

14 is also an increasing sequence of distinct positive integers, with 15 ≤

aj + 14 ≤ 59. The 60 positive integers a1, a2, · · · , a30, a1 + 14, a2 +

14, · · · , a30+14 are all less than or equal to 59. Hence, by the pigeonhole

principle two of these integers are equal. Because the integers aj , j =

1, 2, · · · , 30 are all distinct and the integers aj + 14, j = 1, 2, · · · , 30 are

all distinct, there must be indices i and j with ai = aj + 14. This means

that exactly 14 games were played from day j + 1 to day i.

Example 112. Show that among any n+1 positive integers not exceeding

2n there must be an integer that divides one of the other integers.

Solution: Write each of the n+1 integers a1, a2, · · · , an+1 as a power of

2 times an odd integer. In other words, let aj = 2kjqj for j = 1, 2, · · · , n+

1, where kj is a nonnegative integer and qj is odd. The integers q1, q2, · · · , qn+1

are all odd positive integers less than 2n. Because there are only n odd

positive integers less than 2n, it follows from the pigeonhole principle

that two of the integers q1, q2, · · · , qn+1 must be equal. Therefore, there

are distinct integers i and j such that qi = qj . Let q be the common value

of qi and qj . Then, ai = 2kiq and aj = 2kjq. It follows that if ki < kj ,

then ai divides aj; while if ki > kj , then aj divides ai.

Suppose that a1, a2, · · · , aN is a sequence of real numbers. A subse-

quence of this sequence is a sequence of the form ai1, ai2, · · · , aim, where

1 ≤ i1 < i2 < · · · < im ≤ N . Hence, a subsequence is a sequence

obtained from the original sequence by including some of the terms of the

88 UNIT 2. COUNTING

original sequence in their original order, and perhaps not including other

terms. A sequence is called strictly increasing if each term is larger than

the one that precedes it, and it is called strictly decreasing if each term is

smaller than the one that precedes it.

Theorem 113. Every sequence of n2 + 1 distinct real numbers contains

a subsequence of length n + 1 that is either strictly increasing or strictly

decreasing.

Example 114. The sequence 8, 11, 9, 1, 4, 6, 12, 10, 5, 7 contains 10

terms. Note that 10 = 32 + 1. There are four strictly increasing subse-

quences of length four, namely, 1, 4, 6, 12; 1, 4, 6, 7; 1, 4, 6, 10; and

1, 4, 5, 7. There is also a strictly decreasing subsequence of length four,

namely, 11, 9, 6, 5.

Solution: Let a1, a2, · · · , an2+1 be a sequence of n2+1 distinct real num-

bers.Associate an ordered pair with each term of the sequence, namely,

associate (ik, dk) to the term ak, where ik is the length of the longest in-

creasing subsequence starting at ak, and dk is the length of the longest

decreasing subsequence starting at ak.

Suppose that there are no increasing or decreasing subsequences of

length n + 1. Then ik and dk are both positive integers less than or equal

to n, for k = 1, 2, · · · , n2 + 1. Hence, by the product rule there are n2

possible ordered pairs for (ik, dk). By the pigeonhole principle, two of

these n2 + 1 ordered pairs are equal. In other words, there exist terms as

and at , with s < t such that is = it and ds = dt. We will show that this is

impossible. Because the terms of the sequence are distinct, either as < at

or as > at. If as < at, then, because is = it, an increasing subsequence

of length it + 1 can be built starting at as, by taking as followed by an in-

creasing subsequence of length it beginning at at. This is a contradiction.

2.2. THE PIGEONHOLE PRINCIPLE 89

Similarly, if as > at, the same reasoning shows that ds must be greater

than dt, which is a contradiction.

Let Us Sum Up

In this section, we discussed about

∗ The pigeonhole principle.

∗ The generalized pigeonhole principle.

∗ Applications of pigeohole principle.

Check your Progress

1. The pigeonhole principle is known as

(a) Principle of counting

(b) Dirichlet drawer principle

(c) Principle of inclusion-exclusion

(d) Principle of inclusion

2. Among 100 people there are at least who were born in the

same month.

(a) 12

(b) 10

(c) 9

(d) 6

90 UNIT 2. COUNTING

2.3 Permutations and Combinations

2.3.1 Permutations

Example 115. In how many ways can we select three students from a

group of five students to stand in line for a picture? In how many ways

can we arrange all five of these students in a line for a picture?

Solution: First, note that the order in which we select the students mat-

ters. There are five ways to select the first student to stand at the start of

the line. Once this student has been selected, there are four ways to select

the second student in the line. After the first and second students have

been selected, there are three ways to select the third student in the line.

By the product rule, there are 5 · 4 · 3 = 60 ways to select three students

from a group of five students to stand in line for a picture.

To arrange all five students in a line for a picture, we select the first

student in five ways, the second in four ways, the third in three ways,

the fourth in two ways, and the fifth in one way. Consequently, there are

5 · 4 · 3 · 2 · 1 = 120 ways to arrange all five students in a line for a picture.

A permutation of a set of distinct objects is an ordered arrangement

of these objects. We also are interested in ordered arrangements of some

of the elements of a set. An ordered arrangement of r elements of a set is

called an r-permutation.

Example 116. Let S = {1, 2, 3}. The ordered arrangement 3, 1, 2 is a

permutation of S. The ordered arrangement 3, 2 is a 2-permutation of S.

The number of r permutations of a set with n elements is denoted by

P (n, r). We can find P (n, r) using the product rule.

Example 117. Let S = {a, b, c}. The 2-permutations of S are the or-

dered arrangements a, b; a, c; b, a; b, c; c, a; and c, b. Consequently, there

2.3. PERMUTATIONS AND COMBINATIONS 91

are six 2-permutations of this set with three elements. There are always

six 2-permutations of a set with three elements. There are three ways

to choose the first element of the arrangement. There are two ways to

choose the second element of the arrangement, because it must be dif-

ferent from the first element. Hence, by the product rule, we see that

P (3, 2) = 3 · 2 = 6. the first element. By the product rule, it follows that

P (3, 2) = 3 · 2 = 6.

Theorem 118. If n is a positive integer and r is an integer with 1 ≤ r ≤ n,

then there are

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1)

r-permutations of a set with n distinct elements.

Proof. We will use the product rule to prove that this formula is correct.

The first element of the permutation can be chosen in n ways because

there are n elements in the set. There are n− 1 ways to choose the second

element of the permutation, because there are n−1 elements left in the set

after using the element picked for the first position. Similarly, there are

n− 2 ways to choose the third element, and so on, until there are exactly

n − (r − 1) = n − r + 1 ways to choose the rth element. Consequently,

by the product rule, there are

n(n− 1)(n− 2) · · · (n− r + 1)

r-permutations of the set.

Corollary 119. If n and r are integers with 0 ≤ r ≤ n, then

P (n, r) =
n!

(n− r)!
.

92 UNIT 2. COUNTING

Proof. When n and r are integers with 1 ≤ r ≤ n, by Theorem 118 we

have

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1) =
n!

(n− r)!
.

Because n!
(n−0)! =

n!
n! = 1 whenever n is a nonnegative integer, we see that

the formula P (n, r) = n!
(n−r)! also holds when r = 0.

Example 120. How many ways are there to select a first-prize winner, a

second-prize winner, and a third-prize winner from 100 different people

who have entered a contest?

Solution: Because it matters which person wins which prize, the number

of ways to pick the three prize winners is the number of ordered selec-

tions of three elements from a set of 100 elements, that is, the number of

3-permutations of a set of 100 elements. Consequently, the answer is

P (100, 3) = 100 · 99 · 98 = 970, 200.

Example 121. Suppose that there are eight runners in a race. The winner

receives a gold medal, the second-place finisher receives a silver medal,

and the third-place finisher receives a bronze medal. How many different

ways are there to award these medals, if all possible outcomes of the race

can occur and there are no ties?

Solution: The number of different ways to award the medals is the num-

ber of 3-permutations of a set with eight elements. Hence, there are

P (8, 3) = 8 · 7 · 6 = 336 possible ways to award the medals.

Example 122. Suppose that a saleswoman has to visit eight different

cities. She must begin her trip in a specified city, but she can visit the

2.3. PERMUTATIONS AND COMBINATIONS 93

other seven cities in any order she wishes. How many possible orders can

the saleswoman use when visiting these cities?

Solution: The number of possible paths between the cities is the number

of permutations of seven elements, because the first city is determined,

but the remaining seven can be ordered arbitrarily. Consequently, there

are 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040 ways for the saleswoman to choose

her tour. If, for instance, the saleswoman wishes to find the path between

the cities with minimum distance, and she computes the total distance for

each possible path, she must consider a total of 5040 paths.

Example 123. How many permutations of the letters ABCDEFGH con-

tain the string ABC ?

Solution: Because the letters ABC must occur as a block, we can find

the answer by finding the number of permutations of six objects, namely,

the block ABC and the individual letters D, E, F, G, and H. Because these

six objects can occur in any order, there are 6! = 720 permutations of the

letters ABCDEFGH in which ABC occurs as a block.

2.3.2 Combinations

Example 124. How many different committees of three students can be

formed from a group of four students?

Solution: To answer this question, we need only find the number of

subsets with three elements from the set containing the four students. We

see that there are four such subsets, one for each of the four students,

because choosing three students is the same as choosing one of the four

students to leave out of the group. This means that there are four ways

to choose the three students for the committee, where the order in which

94 UNIT 2. COUNTING

these students are chosen does not matter. An r-combination of elements

of a set is an unordered selection of r elements from the set. Thus, an

r-combination is simply a subset of the set with r elements.

The number of r-combinations of a set with n distinct elements is de-

noted by C(n, r). Note that C(n, r) is also denoted by
(
n
k

)
and is called a

binomial coefficient.

Example 125. We see that C(4, 2) = 6, because the 2-combinations of

{a, b, c, d} are the six subsets {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, and

{c, d}.

Theorem 126. The number of r-combinations of a set with n elements,

where n is a nonnegative integer and r is an integer with 0 ≤ r ≤ n,

equals

C(n, r) =
n!

r!(n− r)!
.

Proof. The P (n, r) r-permutations of the set can be obtained by forming

the C(n, r) r-combinations of the set, and then ordering the elements in

each r-combination, which can be done in P (r, r) ways. Consequently,

by the product rule,

P (n, r) = C(n, r) · P (r, r).

This implies that

C(n, r) =
P (n, r)

P (r, r)
=

n!

/(n− r)!
r!/(r − r)! =

n!

r!(n− r)!
.

We can also use the division rule for counting to construct a proof of this

theorem. Because the order of elements in a combination does not matter

and there are P (r, r) ways to order r elements in an r-combination of

n elements, each of the C(n, r) r-combinations of a set with n elements

2.3. PERMUTATIONS AND COMBINATIONS 95

corresponds to exactly P (r, r) r-permutations. Hence, by the division

rule, C(n, r) = P (n,r)
P (r,r) , which implies as before that C(n, r) = n!

r!(n−r)! .

Example 127. How many poker hands of five cards can be dealt from a

standard deck of 52 cards? Also, how many ways are there to select 47

cards from a standard deck of 52 cards?

Solution: : Because the order in which the five cards are dealt from a

deck of 52 cards does not matter, there are

C(52, 5) =
52!

5!47!

different hands of five cards that can be dealt. To compute the value of

C(52, 5), first divide the numerator and denominator by 47! to obtain

C(52, 5) =
52 · 51 · 50 · 49 · 48

5 · 4 · 3 · 2 · 1
.

This expression can be simplified by first dividing the factor 5 in the de-

nominator into the factor 50 in the numerator to obtain a factor 10 in the

numerator, then dividing the factor 4 in the denominator into the factor 48

in the numerator to obtain a factor of 12 in the numerator, then dividing

the factor 3 in the denominator into the factor 51 in the numerator to ob-

tain a factor of 17 in the numerator, and finally, dividing the factor 2 in

the denominator into the factor 52 in the numerator to obtain a factor of

26 in the numerator. We find that

C(52, 5) = 26 · 17 · 10 · 49 · 12 = 2, 598, 960.

Consequently, there are 2,598,960 different poker hands of five cards that

96 UNIT 2. COUNTING

can be dealt from a standard deck of 52 cards. Note that there are

C(52, 47) =
52!

47!5!

different ways to select 47 cards from a standard deck of 52 cards. We

do not need to compute this value because C(52, 47) = C(52, 5). (Only

the order of the factors 5! and 47! is different in the denominators in the

formulae for these quantities.) It follows that there are also 2,598,960

different ways to select 47 cards from a standard deck of 52 cards.

Corollary 128. Let n and r be nonnegative integers with r ≤ n. Then

C(n, r) = C(n, n− r).

Proof. From Theorem 126 it follows that

C(n, r) =
n!

r!(n− r)!

and

C(n, n− r) =
n!

(n− r)![n− (n− r)]!
=

n!

(n− r)!r!
.

Hence, C(n, r) = C(n, n− r).

Definition 129. A combinatorial proof of an identity is a proof that uses

counting arguments to prove that both sides of the identity count the same

objects but in different ways or a proof that is based on showing that there

is a bijection between the sets of objects counted by the two sides of the

identity. These two types of proofs are called double counting proofs and

bijective proofs, respectively.

Example 130. How many ways are there to select five players from a

10-member tennis team to make a trip to a match at another school?

Solution: The answer is given by the number of 5-combinations of a set

2.3. PERMUTATIONS AND COMBINATIONS 97

with 10 elements. By Theorem 126, the number of such combinations is

C(10, 5) =
10!

5!5!
= 252.

Example 131. A group of 30 people have been trained as astronauts to

go on the first mission to Mars. How many ways are there to select a crew

of six people to go on this mission (assuming that all crew members have

the same job)?

Solution: The number of ways to select a crew of six from the pool of 30

people is the number of 6-combinations of a set with 30 elements, because

the order in which these people are chosen does not matter. By Theorem

2, the number of such combinations is

C(30, 6) =
30!

6!24!
=

30 · 29 · 28 · 27 · 26 · 25
6 · 5 · 4 · 3 · 2 · 1

= 593, 775.

Example 132. How many bit strings of length n contain exactly r 1s?

Solution: The positions of r 1s in a bit string of length n form an

r-combination of the set {1, 2, 3, · · · , n}. Hence, there are C(n, r) bit

strings of length n that contain exactly r 1s.

Example 133. Suppose that there are 9 faculty members in the math-

ematics department and 11 in the computer science department. How

many ways are there to select a committee to develop a discrete mathe-

matics course at a school if the committee is to consist of three faculty

members from the mathematics department and four from the computer

science department?

Solution: By the product rule, the answer is the product of the num-

ber of 3-combinations of a set with nine elements and the number of

98 UNIT 2. COUNTING

4-combinations of a set with 11 elements. By Theorem 126, the num-

ber of ways to select the committee is

C(9, 3) · C(11, 4) =
9!

3!6!
· 11!
4!7!

= 84 · 330 = 27, 720.

Let Us Sum Up

In this section, we discussed about

∗ Permutations

∗ Combinations

∗ Solving counting problems using permutations and combinations.

Check your Progress

1. P (n, 0) =

(a) n

(b) 1

(c) n− 1

(d) 0

2. C(4, 2) =

(a) 4

(b) 2

(c) 8

2.4. GENERALIZED PERMUTATIONS AND COMBINATIONS 99

(d) 6

3. How many bit strings of length n contain exactly r is?

(a) C(n, r)

(b) P (n, r)

(c) r!

(d) (n− r)!

2.4 Generalized Permutations and Combinations

2.4.1 Permutations with Repetition

Counting permutations when repetition of elements is allowed can easily

be done using the product rule, as Example 134 shows.

Example 134. How many strings of length r can be formed from the up-

percase letters of the English alphabet?

Solution: By the product rule, because there are 26 uppercase English

letters, and because each letter can be used repeatedly, we see that there

are 26r strings of uppercase English letters of length r.

Theorem 135. The number of r-permutations of a set of n objects with

repetition allowed is nr.

Proof. There are n ways to select an element of the set for each of the

r positions in the r-permutation when repetition is allowed, because for

each choice all n objects are available. Hence, by the product rule there

are nr r-permutations when repetition is allowed.

100 UNIT 2. COUNTING

2.4.2 Combinations with Repetition

Example 136. How many ways are there to select four pieces of fruit

from a bowl containing apples, oranges, and pears if the order in which

the pieces are selected does not matter, only the type of fruit and not the

individual piece matters, and there are at least four pieces of each type of

fruit in the bowl?

Solution: To solve this problem we list all the ways possible to select

the fruit. There are 15 ways:

4 apples 4 oranges 4 pears

3 apples, 1 orange 3 apples, 1 pear 3 oranges, 1 apple

3 oranges, 1 pear 3 pears, 1 apple 3 pears, 1 orange

2 apples, 2 oranges 2 apples, 2 pears 2 oranges, 2 pears

2 apples, 1 orange, 1 pear 2 oranges, 1 apple, 1 pear 2 pears, 1 apple, 1 orange

The solution is the number of 4-combinations with repetition allowed

from a three-element set, {apple, orange, pear}.

Theorem 137. There are C(n+r−1, r) = C(n+r−1, n−1) r-combinations

from a set with n elements when repetition of elements is allowed.

Proof. Each r-combination of a set with n elements when repetition is

allowed can be represented by a list of n − 1 bars and r stars. The n − 1

bars are used to mark off n different cells, with the ith cell containing a

star for each time the ith element of the set occurs in the combination. For

instance, a 6-combination of a set with four elements is represented with

2.4. GENERALIZED PERMUTATIONS AND COMBINATIONS 101

three bars and six stars. Here

∗ ∗ | ∗ || ∗ ∗∗

represents the combination containing exactly two of the first element,

one of the second element, none of the third element, and three of the

fourth element of the set.

As we have seen, each different list containing n − 1 bars and r stars

corresponds to an r-combination of the set with n elements, when repeti-

tion is allowed. The number of such lists is C(n− 1+ r, r), because each

list corresponds to a choice of the r positions to place the r stars from the

n−1+r positions that contain r stars and n−1 bars. The number of such

lists is also equal to C(n− 1+ r, n− 1), because each list corresponds to

a choice of the n− 1 positions to place the n− 1 bars.

Example 138. Suppose that a cookie shop has four different kinds of

cookies. How many different ways can six cookies be chosen? Assume

that only the type of cookie, and not the individual cookies or the order in

which they are chosen, matters.

Solution: The number of ways to choose six cookies is the number of

6-combinations of a set with four elements. From Theorem 137 this

equals C(4 + 6− 1, 6) = C(9, 6). Because

C(9, 6) = C(9, 3) =
9 · 8 · 7
1 · 2 · 3

= 84,

there are 84 different ways to choose the six cookies.

Example 139. How many solutions does the equation

x1 + x2 + x3 = 11

102 UNIT 2. COUNTING

have, where x1, x2, and x3 are nonnegative integers?

Solution: To count the number of solutions, we note that a solution

corresponds to a way of selecting 11 items from a set with three elements

so that x1 items of type one, x2 items of type two, and x3 items of type

three are chosen. Hence, the number of solutions is equal to the number of

11-combinations with repetition allowed from a set with three elements.

From Theorem 137 it follows that there are

C(3 + 11− 1, 11) = C(13, 11) = C(13, 2) =
13 · 12
1 · 2

= 78

solutions.

The number of solutions of this equation can also be found when the

variables are subject to constraints. For instance, we can find the number

of solutions where the variables are integers with x1 ≥ 1, x2 ≥ 2, and

x3 ≥ 3. A solution to the equation subject to these constraints corresponds

to a selection of 11 items with x1 items of type one, x2 items of type two,

and x3 items of type three, where, in addition, there is at least one item

of type one, two items of type two, and three items of type three. So, a

solution corresponds to a choice of one item of type one, two of type two,

and three of type three, together with a choice of five additional items of

any type. By Theorem 137 this can be done in

C(3 + 5− 1, 5) = C(7, 5) = C(7, 2) =
7 · 6
1 · 2

= 21

ways. Thus, there are 21 solutions of the equation subject to the given

constraints.

Example 140. What is the value of k after the following pseudocode has

been executed?

2.4. GENERALIZED PERMUTATIONS AND COMBINATIONS 103

Solution: Note that the initial value of k is 0 and that 1 is added to k each

time the nested loop is traversed with a sequence of integers i1, i2, · · · , im
such that

1 ≤ im ≤ im−1 ≤ · · · ≤ i1 ≤ n.

The number of such sequences of integers is the number of ways to choose

m integers from {1, 2, · · · , n}, with repetition allowed. (To see this, note

that once such a sequence has been selected, if we order the integers in

the sequence in nondecreasing order, this uniquely defines an assignment

of im, im−1, · · · , i1. Conversely, every such assignment corresponds to a

unique unordered set.) Hence, from Theorem 126, it follows that k =

C(n+m− 1,m) after this code has been executed.

The formulae for the numbers of ordered and unordered selections of

r elements, chosen with and without repetition allowed from a set with n

elements, are shown in Table 1.1.

104 UNIT 2. COUNTING

Table 2.1: Combinations and Permutations with and without Repetition.

Type Repetition Allowed? Formula

r-permutations No n!
(n−r)!

r-combinations No n!
r!(n−r)!

r-permutations Yes nr

r-combinations Yes (n+r−1)!
r!(n−1)!

2.4.3 Permutations with Indistinguishable Objects

Example 141. How many different strings can be made by reordering the

letters of the word SUCCESS?

Solution: Because some of the letters of SUCCESS are the same, the

answer is not given by the number of permutations of seven letters. This

word contains three Ss, two Cs, one U, and one E. To determine the num-

ber of different strings that can be made by reordering the letters, first note

that the three Ss can be placed among the seven positions in C(7, 3) dif-

ferent ways, leaving four positions free. Then the two Cs can be placed in

C(4, 2) ways, leaving two free positions. The U can be placed in C(2, 1)

ways, leaving just one position free. Hence E can be placed in C(1, 1)

way. Consequently, from the product rule, the number of different strings

that can be made is

C(7, 3)C(4, 2)C(2, 1)C(1, 1) =
7!

3!4!
· 4!

2!2!
· 2!

1!1!
· 1!

1!0!

=
7!

3!2!1!1!
= 420.

2.4. GENERALIZED PERMUTATIONS AND COMBINATIONS 105

Theorem 142. The number of different permutations of n objects, where

there are n1 indistinguishable objects of type 1, n2 indistinguishable ob-

jects of type 2, · · · , and nk indistinguishable objects of type k, is

n!

n1!n2! · · ·nk!
.

Proof. To determine the number of permutations, first note that the n1

objects of type one can be placed among the n positions in C(n, n1) ways,

leaving n− n1 positions free. Then the objects of type two can be placed

in C(n − n1, n2) ways, leaving n − n1 − n2 positions free. Continue

placing the objects of type three,· · · , type k − 1, until at the last stage, nk

objects of type k can be placed in C(n− n1 − n2 − · · · − nk−1, nk) ways.

Hence, by the product rule, the total number of different permutations is

C(n, n1)C(n− n1, n2) · · ·C(n− n1 − · · · − nk−1, nk)

=
n!

n1!(n− n1)!(n− n1)!n2!(n− n1 − n2)! · · · (n− n1 − · · · − nk−1)!
nk!0!

=
n!

n1!n2! · · ·nk!
.

2.4.4 Distributing Objects into Boxes

Many counting problems can be solved by enumerating the ways objects

can be placed into boxes (where the order these objects are placed into the

boxes does not matter). The objects can be either distinguishable, that is,

different from each other, or indistinguishable, that is, considered iden-

tical. Distinguishable objects are sometimes said to be labeled, whereas

indistinguishable objects are said to be unlabeled. Similarly, boxes can

be distinguishable, that is, different, or indinguishable, that is, identical.

Distinguishable boxes are often said to be labeled, while indistinguish-

106 UNIT 2. COUNTING

able boxes are said to be unlabeled.

Remark 143. A closed formula is an expression that can be evaluated

using a finite number of operations and that includes numbers, variables,

and values of functions, where the operations and functions belong to a

generally accepted set that can depend on the context.

2.4.5 Distinguishable Objects and Distinguishable Boxes

Example 144. How many ways are there to distribute hands of 5 cards to

each of four players from the standard deck of 52 cards?

Solution: We will use the product rule to solve this problem. To begin,

note that the first player can be dealt 5 cards in C(52, 5) ways. The second

player can be dealt 5 cards in C(47, 5) ways, because only 47 cards are

left. The third player can be dealt 5 cards in C(42, 5) ways. Finally, the

fourth player can be dealt 5 cards in C(37, 5) ways. Hence, the total

number of ways to deal four players 5 cards each is

C(52, 5)C(47, 5)C(42, 5)C(37, 5) =
52!

47!5!
· 47!

42!5!
· 42!

37!5!
· 37!32!5!

=
52!

5!5!5!5!32!
.

Theorem 145. The number of ways to distribute n distinguishable objects

into k distinguishable boxes so that ni objects are placed into box i, i =

1, 2, · · · , k, equals
n!

n1!n2! · · ·nk!
.

2.4.6 Indistinguishable Objects Distinguishable Boxes

Example 146. How many ways are there to place 10 indistinguishable

balls into eight distinguishable bins?

2.4. GENERALIZED PERMUTATIONS AND COMBINATIONS 107

Solution: The number of ways to place 10 indistinguishable balls into

eight bins equals the number of 10-combinations from a set with eight

elements when repetition is allowed. Consequently, there are

C(8 + 10− 1, 10) = C(17, 10) =
17!

10!7!
= 19, 448.

2.4.7 Distinguishable Objects and Indistinguishable Boxes

Example 147. How many ways are there to put four different employ-

ees into three indistinguishable offices, when each office can contain any

number of employees?

Solution: We will solve this problem by enumerating all the ways these

employees can be placed into the offices. We represent the four employees

by A, B, C, and D. First, we note that we can distribute employees so that

all four are put into one office, three are put into one office and a fourth is

put into a second office, two employees are put into one office and two put

into a second office, and finally, two are put into one office, and one each

put into the other two offices. Each way to distribute these employees to

these offices can be represented by a way to partition the elements A, B,

C, and D into disjoint subsets.

We can put all four employees into one office in exactly one way, rep-

resented by {{A,B,C,D}}. We can put three employees into one office

and the fourth employee into a different office in exactly four ways, repre-

sented by {{A,B,C}, {D}}, {{A,B,D}, {C}}, {{A,C,D}, {B}}, and

{{B,C,D}, {A}}. We can put two employees into one office and two into

a second office in exactly three ways, represented by {{A,B}, {C,D}},

{{A,C}, {B,D}}, and {{A,D}, {B,C}}. Finally, we can put two em-

ployees into one office, and one each into each of the remaining two offices

108 UNIT 2. COUNTING

in six ways, represented by {{A,B}, {C}, {D}},{{A,C}, {B}, {D}},

{{A,D}, {B}, {C}}, {{B,C}, {A}, {D}}, {{B,D}}, {A}, {C}}, and

{{C,D}, {A}, {B}}.

Counting all the possibilities, we find that there are 14 ways to put

four different employees into three indistinguishable offices. Another way

to look at this problem is to look at the number of offices into which we put

employees. Note that there are six ways to put four different employees

into three indistinguishable offices so that no office is empty, seven ways

to put four different employees into two indistinguishable offices so that

no office is empty, and one way to put four employees into one office so

that it is not empty. Let S(n, j) denote the number of ways to distribute

n distinguishable objects into j indistinguishable boxes so that no box is

empty. The numbers S(n, j) are called Stirling numbers of the second

kind.

S(n, j) =
1

j!

j−1∑
i=0

(−1)i
(
j

i

)
(J − i)n.

Consequently, the number of ways to distribute n distinguishable objects

into k indistinguishable boxes equals

k∑
j=1

S(n, j) =
k∑

j=1

1

j!

j−1∑
i=0

(−1)i
(
j

i

)
(j − i)n.

2.4.8 Indistinguishable Objects and Indistinguishable Boxes

Example 148. How many ways are there to pack six copies of the same

book into four identical boxes, where a box can contain as many as six

books?

Solution: We will enumerate all ways to pack the books. For each way

to pack the books, we will list the number of books in the box with the

2.4. GENERALIZED PERMUTATIONS AND COMBINATIONS 109

largest number of books, followed by the numbers of books in each box

containing at least one book, in order of decreasing number of books in a

box. The ways we can pack the books are

6 3, 2, 1

5, 1 3, 1, 1, 1

4, 2 2, 2, 2

4, 1, 1 2, 2, 1, 1.

3, 3

For example, 4, 1, 1 indicates that one box contains four books, a

second box contains a single book, and a third box contains a single book

(and the fourth box is empty). We conclude that there are nine allowable

ways to pack the books, because we have listed them all.

Let Us Sum Up

In this section, we discussed about

∗ Permutations with repetition.

∗ Combinations with repetition.

∗ Permutations with indistinguishable objects.

Check your Progress

1. How many strings of length r can be formed from uppercase letters of

the English alphabet?

110 UNIT 2. COUNTING

(a) 2b!

(b) r(2b)

(c) 2b

(d) (2b− r)!

2. How many different strings can be made by reordering the letters of the

word success?

(a) 720

(b) 400

(c) 120

(d) 420

2.5 Generating Permutations and Combinations

2.5.1 Generating Permutations

In lexiocographic (or dictionary) ordering this ordering, the permuta-

tion a1a2 · · · an precedes the permutation of b1b2 · · · bn, if for some k, with

1 ≤ k ≤ n, a1 = b1, a2 = b2, · · · , ak−1 = bk−1, and ak < bk. In

other words, a permutation of the set of the n smallest positive integers

precedes (in lexicographic order) a second permutation if the number in

this permutation in the first position where the two permutations disagree

is smaller than the number in that position in the second permutation.

Example 149. The permutation 23415 of the set {1, 2, 3, 4, 5} precedes

the permutation 23514, because these permutations agree in the first two

positions, but the number in the third position in the first permutation, 4,

2.5. GENERATING PERMUTATIONS AND COMBINATIONS 111

is smaller than the number in the third position in the second permutation,

5. Similarly, the permutation 41532 precedes 52143.

Example 150. What is the next permutation in lexicographic order after

362541?

Solution: The last pair of integers aj and aj+1 where aj < aj+1 is a3 = 2

and a4 = 5. The least integer to the right of 2 that is greater than 2 in

the permutation is a5 = 4. Hence, 4 is placed in the third position. Then

the integers 2, 5, and 1 are placed in order in the last three positions,

giving 125 as the last three positions of the permutation. Hence, the next

permutation is 364125.

Example 151. Generate the permutations of the integers 1, 2, 3 in lexico-

graphic order.

Solution: Begin with 123. The next permutation is obtained by inter-

changing 3 and 2 to obtain 132. Next, because 3 > 2 and 1 < 3, permute

the three integers in 132. Put the smaller of 3 and 2 in the first position,

and then put 1 and 3 in increasing order in positions 2 and 3 to obtain

213. This is followed by 231, obtained by interchanging 1 and 3, because

1 < 3. The next larger permutation has 3 in the first position, followed by

1 and 2 in increasing order, namely, 312. Finally, interchange 1 and 2 to

obtain the last permutation, 321. We have generated the permutations of

1, 2, 3 in lexicographic order. They are 123, 132, 213, 231, 312, and 321.

Algorithm 1 displays the procedure for finding the next permutation in

lexicographic order after a permutation that is not n n− 1 n− 2 · · · 2 1,

which is the largest permutation.

112 UNIT 2. COUNTING

2.5.2 Generating Combinations

Example 152. Find the next bit string after 10 0010 0111.

Solution: The first bit from the right that is not a 1 is the fourth bit from

the right. Change this bit to a 1 and change all the following bits to 0s.

This produces the next larger bit string, 10 0010 1000. The procedure for

producing the next larger bit string after bn−1 bn−2 · · · b1 b0 is given as

Algorithm 2.

Example 153. Find the next larger 4-combination of the set {1, 2, 3, 4, 5, 6}

after {1, 2, 5, 6}.

Solution: The last term among the terms ai with a1 = 1, a2 = 2, a3 = 5,

and a4 = 6 such that ai 6= 6 − 4 + i is a2 = 2. To obtain the next larger

4-combination, increment a2 by 1 to obtain a2 = 3. Then set a3 = 3+1 =

2.5. GENERATING PERMUTATIONS AND COMBINATIONS 113

4 and a4 = 3+2 = 5. Hence the next larger 4-combination is {1, 3, 4, 5}.

Algorithm 3 displays pseudocode for this procedure.

Let Us Sum Up

In this section, we discussed about

∗ Generating permutations and combinations.

∗ Algorithm for generating permutations and combinations.

114 UNIT 2. COUNTING

Check your Progress

1. What is the next permutation in lexicographic order after 362541?

(a) 362542

(b) 462541

(c) 362514

(d) 364125

2. Find the next bit string after 10 0010 0111?

(a) 10 0010 1111

(b) 11 0010 0111

(c) 10 0010 1000

(d) 10 0011 1111

Summary

In this unit, we discussed about

∗ The basics of counting.

∗ The subtraction rule.

∗ The division rule.

∗ The Pigeonhole principle.

∗ Generalized pigeonhole principle.

∗ Applications of pigeonhole principle.

2.5. GENERATING PERMUTATIONS AND COMBINATIONS 115

∗ Generalized permutations and combinations.

∗ Generating permutations and combinations.

Glossary

combinatorics: the study of arrangements of objects.

enumeration: the counting of arrangements of objects.

tree diagram: a diagram made up of a root, branches leaving the root,

and other branches leaving some of the endpoints of branches.

permutation: an ordered arrangement of the elements of a set.

r-permutation: an ordered arrangement of r elements of a set.

P (n, r): the number of r-permutations of a set with n elements.

r-combination: an unordered selection of r elements of a set.

C(n, r): the number of r-combinations of a set with n elements.

Self Assessment Questions

1. Explain how to find the number of bit strings of length not exceeding

10 that have at least one 0 bit.

2. Hoe can you find the number of bit strings of length ten that either

begin with 101 or end with 010?

3. What is meant by a combinatorial proof of an identity? How is such

a proof different from an algebraic one?

4. Explain how to prove Pascal’s identity using a combinatorial argu-

ment.

116 UNIT 2. COUNTING

Exercises

1. How many strings of length 10 either start with 000 or end with

1111?

2. Show that the decimal expansion of a rational number must repeat

itself from some point onward.

3. Find n if

a) P (n, 2) = 110 b) P (n, n) = 5040 c) P (n, 4) =

12P (n, 2).

4. Find n if

a) C(n, 2) = 45 b) C(n, 3) = P (n, 2) c) C(n, 5) =

C(n, 2).

5. How many ways are there to assign 24 students to five faculty advi-

sors?

Answers to Check your Progress

Section 2.1: 1)c 2)a

Section 2.2: 1)b 2)c

Section 2.3: 1)b 2)d 3)a

Section 2.4: 1)c 2)d

Section 2.5: 1)d 2)c

Reference:

1. Kenneth H. Rosen, “Discrete Mathematics and its Applications”,

7th Edition, WCB/ McGraw Hill Publications, New Delhi, 2011.

2.5. GENERATING PERMUTATIONS AND COMBINATIONS 117

Suggested Readings:

1. Edward A. Bender and S. Gill Williamson, “A Short Course in Dis-

crete Mathematics”, Dover Publications, 2006.

2. M.O. Albertson and J.P. Hutchinson, “Discrete Mathematics with

Algorithms”, John Wiley & Sons, 2008.

3. Rajendra Akerkar and Rupali Akarkar, “Discrete Mathematics”, Pear-

son Education Pvt. Ltd, Singapore, 2004.

4. J. P. Trembley and R. Manohar, “Discrete Mathematical Structures”,

Tata McGraw Hill, New Delhi,1997.

5. Martin Aigner, “A Course in Enumeration”, Springer-Verlag, Hei-

delberg, 2007.

6. J.H. Van Lint and R.M. Wilson, “A Course in Combinatorics”, 2nd

Edition, Cambridge University Press, Cambridge, 2001.

118 UNIT 2. COUNTING

Unit 3

Advanced Counting Techniques

Objectives

1. To learn techniques which can be used to solve different types of

counting problems.

2. To discuss a variety of divide-and-conquer algorithms and analyze

then using recurrence relations.

3. To solve counting problems using formal power series, called gen-

erating functions.

4. To model counting problems using recurrence relations.

5. To study the complexity of algorithms using recurrence relations.

3.1 Applications of Recurrence Relations

3.1.1 Modeling With Recurrence Relations

We can use recurrence relations to model a wide variety of problems,

such as finding compound interest, counting rabbits on an island, deter-

119

120 UNIT 3. ADVANCED COUNTING TECHNIQUES

mining the number of moves in the Tower of Hanoi puzzle, and counting

bit strings with certain properties.

Example 154 shows how the population of rabbits on an island can be

modeled using a recurrence relation.

Example 154. Rabbits and the Fibonacci Numbers Consider this prob-

lem, which was originally posed by Leonardo Pisano, also known as Fi-

bonacci, in the thirteenth century in his book Liber abaci. A young pair of

rabbits (one of each sex) is placed on an island. A pair of rabbits does not

breed until they are 2 months old. After they are 2 months old, each pair

of rabbits produces another pair each month. Find a recurrence relation

for the number of pairs of rabbits on the island after n months, assuming

that no rabbits ever die.

Solution: Denote by fn the number of pairs of rabbits after n months.

We will show that fn, n = 1, 2, 3, · · · , are the terms of the Fibonacci

sequence.

The rabbit population can be modeled using a recurrence relation. At

the end of the first month, the number of pairs of rabbits on the island

is f1 = 1. Because this pair does not breed during the second month,

f2 = 1 also. To find the number of pairs after n months, add the number

on the island the previous month, fn−1, and the number of newborn pairs,

which equals fn−2, because each newborn pair comes from a pair at least

2 months old. Consequently, the sequence {fn} satisfies the recurrence

relation fn = fn−1 + fn−2 for n ≥ 3 together with the initial conditions

f1 = 1 and f2 = 1. Because this recurrence relation and the initial con-

ditions uniquely determine this sequence, the number of pairs of rabbits

on the island after n months is given by the nth Fibonacci number.

Example 155. The Tower of Hanoi Puzzle A popular puzzle of the late

3.1. APPLICATIONS OF RECURRENCE RELATIONS 121

nineteenth century invented by the French mathematician douard Lucas,

called the Tower of Hanoi, consists of three pegs mounted on a board

together with disks of different sizes. Initially these disks are placed on

the first peg in order of size, with the largest on the bottom (as shown

in Figure 1.1). The rules of the puzzle allow disks to be moved one at

a time from one peg to another as long as a disk is never placed on top

of a smaller disk. The goal of the puzzle is to have all the disks on the

second peg in order of size, with the largest on the bottom. Let Hn denote

Figure 3.1: The initial position in the Tower of Hanoi.

the number of moves needed to solve the Tower of Hanoi problem with n

disks. Set up a recurrence relation for the sequence {Hn}.

Solution: Begin with n disks on peg 1. We can transfer the top n − 1

disks, following the rules of the puzzle, to peg 3 using Hn−1 moves. We

keep the largest disk fixed during these moves. Then, we use one move to

transfer the largest disk to the second peg. We can transfer the n−1 disks

on peg 3 to peg 2 using Hn−1 additional moves, placing them on top of the

largest disk, which always stays fixed on the bottom of peg 2. Moreover,

it is easy to see that the puzzle cannot be solved using fewer steps. This

122 UNIT 3. ADVANCED COUNTING TECHNIQUES

shows that

Hn = 2Hn−1 + 1.

The initial condition is H1 = 1, because one disk can be transferred from

peg 1 to peg 2, according to the rules of the puzzle, in one move.

We can use an iterative approach to solve this recurrence relation.

Note that

Hn = 2Hn−1 + 1

= 2(2Hn−2 + 1) + 1 = 22 Hn−2 + 2 + 1

= 2 · 2(2 Hn−3 + 1) + 2 + 1 = 23 Hn−3 + 22 + 2 + 1

...

= 2n−1H1 + 2n−2 + 2n−3 + · · ·+ 2 + 1

= 2n−1 + 2n−2 + · · ·+ 2 + 1

= 2n − 1.

We have used the recurrence relation repeatedly to express Hn in terms

of previous terms of the sequence. In the next to last equality, the initial

condition H1 = 1 has been used. The last equality is based on the formula

for the sum of the terms of a geometric series. The iterative approach has

produced the solution to the recurrence relation Hn = 2!Hn−1+1 with the

initial condition H1 = 1. This formula can be proved using mathematical

induction.

A myth created to accompany the puzzle tells of a tower in Hanoi where

monks are transferring 64 gold disks from one peg to another, according

to the rules of the puzzle. The myth says that the world will end when they

finish the puzzle. How long after the monks started will the world end if

the monks take one second to move a disk?

3.1. APPLICATIONS OF RECURRENCE RELATIONS 123

From the explicit formula, the monks require

264 − 1 = 18, 446, 744, 073, 709, 551, 615

moves to transfer the disks. Making one move per second, it will take them

more than 500 billion years to complete the transfer, so the world should

survive a while longer than it already has.

Example 156. Find a recurrence relation and give initial conditions for

the number of bit strings of length n that do not have two consecutive 0s.

How many such bit strings are there of length five?

Solution: Let an denote the number of bit strings of length n that do not

have two consecutive 0s. We assume that n ≥ 3, so that the bit string has

at least three bits. The bit strings of length n ending with 1 that do not

have two consecutive 0s are precisely the bit strings of length n − 1 with

no two consecutive 0s with a 1 added at the end. Consequently, there are

an−1 such bit strings.

Bit strings of length n ending with a 0 that do not have two consecutive

0s must have 1 as their (n−1)st bit; otherwise they would end with a pair

of 0s. It follows that the bit strings of length n ending with a 0 that have

no two consecutive 0s are precisely the bit strings of length n − 2 with

no two consecutive 0s with 10 added at the end. Consequently, there are

an−2 such bit strings. We conclude, as illustrated in Figure 1.2, that

an = an−1 + an−2

for n ≥ 3.

The initial conditions are a1 = 2, because both bit strings of length

one, 0 and 1 do not have consecutive 0s, and a2 = 3, because the valid

bit strings of length two are 01, 10, and 11. To obtain a5, we use the

124 UNIT 3. ADVANCED COUNTING TECHNIQUES

Figure 3.2: Counting bit strings of length n with no two consecutive 0s.

recurrence relation three times to find that

a3 = a2 + a1 = 3 + 2 = 5,

a4 = a3 + a2 = 5 + 3 = 8,

a5 = a4 + a3 = 8 + 5 = 13.

Example 157. Codeword Enumeration A computer system considers a

string of decimal digits a valid codeword if it contains an even number of

0 digits. For instance, 1230407869 is valid, whereas 120987045608 is not

valid. Let an be the number of valid n-digit codewords. Find a recurrence

relation for an.

Solution: Note that a1 = 9 because there are 10 one-digit strings, and

only one, namely, the string 0, is not valid. A recurrence relation can be

derived for this sequence by considering how a valid n-digit string can be

obtained from strings of n− 1 digits. There are two ways to form a valid

string with n digits from a string with one fewer digit.

First, a valid string of n digits can be obtained by appending a valid

string of n − 1 digits with a digit other than 0. This appending can be

done in nine ways. Hence, a valid string with n digits can be formed in

this manner in 9 an−1 ways.

3.1. APPLICATIONS OF RECURRENCE RELATIONS 125

Second, a valid string of n digits can be obtained by appending a 0 to a

string of length n−1 that is not valid. (This produces a string with an even

number of 0 digits because the invalid string of length n − 1 has an odd

number of 0 digits.) The number of ways that this can be done equals the

number of invalid (n − 1)-digit strings. Because there are 10n−1 strings

of length n− 1, and an−1 are valid, there are 10n−1 − an−1 valid n-digit

strings obtained by appending an invalid string of length n− 1 with a 0.

Because all valid strings of length n are produced in one of these two

ways, it follows that there are

an = 9 an−1 + (10n−1 − an−1)

= 8 an−1 + 10n−1

valid strings of length n.

Example 158. Find a recurrence relation for Cn, the number of ways to

parenthesize the product of n+1 numbers, x0 ·x1 ·x2 ·· · ··xn, to specify the

order of multiplication. For example, C3 = 5 because there are five ways

to parenthesize x0 · x1 · x2 · x3 to determine the order of multiplication:

((x0 · x1) · x2 · x3 (x0 · (x1 · x2)) · x3 (x0 · x1) · (x2 · x3)

x0 · ((x1 · x2) · x3) (x0 · (x1 · (x2 · x3)).

Solution: To develop a recurrence relation for Cn, we note that however

we insert parentheses in the product x0 · x1 · x2 · · · · · xn, one “” operator

remains outside all parentheses, namely, the operator for the final multi-

plication to be performed. [For example, in (x0 · (x1 · x2)) · x3, it is the

final “”, while in (x0 · x1) · (x2 · x3) it is the second “”.] This final oper-

ator appears between two of the n + 1 numbers, say, xk and xk+1. There

126 UNIT 3. ADVANCED COUNTING TECHNIQUES

are CkCn−k−1 ways to insert parentheses to determine the order of the

n + 1 numbers to be multiplied when the final operator appears between

xk and xk+1, because there are Ck ways to insert parentheses in the prod-

uct x0 · x1 · · · · · xk to determine the order in which these k + 1 numbers

are to be multiplied and Cn−k−1 ways to insert parentheses in the product

xk+1 · xk+2 · · · · · xn to determine the order in which these n− k numbers

are to be multiplied. Because this final operator can appear between any

two of the n+ 1 numbers, it follows that

Cn = C0Cn−1 + C1Cn−2 + · · ·+ Cn−2C1 + Cn−1C0

=
n−1∑
k=0

CkCn−k−1.

Note that the initial conditions are C0 = 1 and C1 = 1. The recurrence

relation in Example 158 can be solved using the method of generating

functions. It can be shown that Cn = C(2n, n)/(n + 1) and that Cn ∼
4n

n3/2
√
π

. The sequence {Cn} is the sequence of Catalan numbers, named

after Eugene Charles Catalan.

3.1.2 Algorithms and Recurrence Relations

Example 159. Consider seven talks with these start times and end times,

as illustrated in Figure 1.3.

Talk 1: start 8 a.m., end 10 a.m.

Talk 2: start 9 a.m., end 11 a.m.

Talk 3: start 10:30 a.m., end 12 noon

3.1. APPLICATIONS OF RECURRENCE RELATIONS 127

Talk 4: start 9:30 a.m., end 1 p.m.

Talk 5: start 8:30 a.m., end 2 p.m.

Talk 6: start 11 a.m., end 2 p.m.

Talk 7: start 1 p.m., end 2 p.m.

Find p(j) for j = 1, 2, · · · , 7.

Solution: We have p(1) = 0 and p(2) = 0, because no talks end before

either of the first two talks begin. We have p(3) = 1 because talk 3 and

talk 1 are compatible, but talk 3 and talk 2 are not compatible; p(4) = 0

because talk 4 is not compatible with any of talks 1, 2, and 3; p(5) = 0

because talk 5 is not compatible with any of talks 1, 2, 3, and 4; and

p(6) = 2 because talk 6 and talk 2 are compatible, but talk 6 is not com-

patible with any of talks 3, 4, and 5. Finally, p(7) = 4, because talk 7 and

talk 4 are compatible, but talk 7 is not compatible with either of talks 5 or

6. To develop a dynamic programming algorithm for this problem, we first

Figure 3.3: A schedule of lectures with the values of p(n) shown.

128 UNIT 3. ADVANCED COUNTING TECHNIQUES

develop a key recurrence relation. To do this, first note that if j ≤ n, there

are two possibilities for an optimal schedule of the first j talks (recall that

we are assuming that the n talks are ordered by increasing end time): (i)

talk j belongs to the optimal schedule or (ii) it does not.

Case (i): We know that talks p(j) + 1, · · · , j − 1 do not belong to

this schedule, for none of these other talks are compatible with talk j

. Furthermore, the other talks in this optimal schedule must comprise

an optimal schedule for talks 1, 2, · · · , p(j). For if there were a better

schedule for talks 1, 2, · · · , p(j), by adding talk j , we will have a schedule

better than the overall optimal schedule. Consequently, in case (i), we

have

T (j) = wj + T (p(j)).

Case (ii): When talk j does not belong to an optimal schedule, it fol-

lows that an optimal schedule from talks 1, 2, · · · , j is the same as an

optimal schedule from talks 1, 2, · · · , j − 1. Consequently, in case (ii),

we have T (j) = T (j − 1). Combining cases (i) and (ii) leads us to the

recurrence relation

T (j) = max(wj + T (p(j)), T (j − 1)).

Now that we have developed this recurrence relation, we can construct

an efficient algorithm, Algorithm 1, for computing the maximum total

number of attendees.We ensure that the algorithm is efficient by storing

the value of each T (j) after we compute it. This allows us to compute

T (j) only once. If we did not do this, the algorithm would have expo-

nential worst-case complexity. The process of storing the values as each

is computed is known as memoization and is an important technique for

making recursive algorithms efficient.

3.1. APPLICATIONS OF RECURRENCE RELATIONS 129

Let Us Sum Up

In this section, we discussed about

∗ Modeling with recurrence relations.

∗ Algorithms and recurrence relations.

∗ Dynamic programming.

Check your Progress

1. the Fibonacci numbers satisfy the recurrence relation

(a) fn = fn−1 − fn−2

(b) fn = fn−1 + fn−2

(c) fn = 2fn−1 − fn−2

(d) fn = fn−1 + 2fn−2

2. The initial condition H1 = is the Tower of Hanoi puzzle.

130 UNIT 3. ADVANCED COUNTING TECHNIQUES

(a) 0

(b) 1

(c) 2

(d) 3

3.2 Solving Linear Recurrence Relations

Definition 160. A linear homogeneous recurrence relation of degree k

with constant coefficients is a recurrence relation of the form

an = c1an−1 + c2an−2 + · · ·+ ckan−k,

where c1, c2, · · · , ck are real numbers, and ck 6= 0.

The recurrence relation in the definition is linear because the right-

hand side is a sum of previous terms of the sequence each multiplied by a

function of n. The recurrence relation is homogeneous because no terms

occur that are not multiples of the ajs. The coefficients of the terms of the

sequence are all constants, rather than functions that depend on n. The

degree is k because an is expressed in terms of the previous k terms of

the sequence.

A consequence of the second principle of mathematical induction is

that a sequence satisfying the recurrence relation in the definition is uniquely

determined by this recurrence relation and the k initial conditions

a0 = C0, a1 = C1, · · · , ak−1 = Ck−1.

Example 161. The recurrence relation Pn = (1.11)Pn−1 is a linear ho-

mogeneous recurrence relation of degree one. The recurrence relation

3.2. SOLVING LINEAR RECURRENCE RELATIONS 131

fn = fn−1 + fn−2 is a linear homogeneous recurrence relation of de-

gree two. The recurrence relation an = an−5 is a linear homogeneous

recurrence relation of degree five.

Example 162. The recurrence relation an = an−1 + a2 is not linear. The

recurrence relation Hn = 2Hn−1+1 is not homogeneous. The recurrence

relation Bn = nBn−1 does not have constant coefficients.

3.2.1 Solving Linear Homogeneous Recurrence Relations with

Constant Coefficients

Recurrence relations may be difficult to solve, but fortunately this is not

the case for linear homogenous recurrence relations with constant coef-

ficients. We can use two key ideas to find all their solutions. First these

recurrence relations have solutions of the form an = rn, where r is a con-

stant. To see this, observe that an = rn is a solution of the recurrence

relation an = c1an−1 + c2an−2 + · · ·+ ck an−k if and only if

rn = c1 r
n−1 + c2 r

n−2 + · · ·+ ck r
n−k.

When both sides of this equation are divided by rn−k and the right-hand

side is subtracted from the left, we obtain the equation

rk − c1 r
k−1 − c2 r

k−2 − · · · − ck−1r − ck = 0.

Consequently, the sequence {an} with an = rn is a solution if and only

if r is a solution of this last equation. We call this the characteristic

equation of the recurrence relation. The solutions of this equation are

called the characteristic roots of the recurrence relation. As we will see,

these characteristic roots can be used to give an explicit formula for all

132 UNIT 3. ADVANCED COUNTING TECHNIQUES

the solutions of the recurrence relation.

The other key observation is that a linear combination of two solutions

of a linear homogeneous recurrence relation is also a solution. To see

this, suppose that sn and tn are both solutions of an = c1an−1+ c2an−2+

· · ·+ ckan−k. Then

sn = c1sn−1 + c2sn−2 + · · ·+ cksn−k

and

tn = c1tn−1 + c2tn−2 + · · ·+ cktn−k.

Now suppose that b1 and b2 are real numbers. Then

b1sn + b2tn = b1(c1sn−1 + c2sn−2 +

· · ·+ cksn−k) + b2(c1tn−1 + c2tn−2 + · · ·+ cktn−k)

= c1(b1sn−1 + b2tn−1) + c2(b1sn−2 + b2tn−2) +

· · ·+ ck(b1sn−k + bktn−k).

This means that b1sn + b2tn is also a solution of the same linear homoge-

neous recurrence relation.

Using these key observations, we will show how to solve linear homo-

geneous recurrence relations with constant coefficients.

The Degree Two Case We now turn our attention to linear homogeneous

recurrence relations of degree two. First, consider the case when there

are two distinct characteristic roots.

Theorem 163. Let c1 and c2 be real numbers. Suppose that r2 − c1r −

c2 = 0 has two distinct roots r1 and r2. Then the sequence {an} is a

solution of the recurrence relation an = c1 an−1 + c2an−2 if and only if

an = α1r
n
1 + αn

2 for n = 0, 1, 2, · · · , where α1 and α2 are constants.

3.2. SOLVING LINEAR RECURRENCE RELATIONS 133

Proof. We must do two things to prove the theorem. First, it must be

shown that if r1 and r2 are the roots of the characteristic equation, and α1

and α2 are constants, then the sequence {an} with an = α1r
n
1 + α2r

n
2 is

a solution of the recurrence relation. Second, it must be shown that if the

sequence {an} is a solution, then an = α1r
n
1 + α2r

n
2 for some constants

α1 and α2.

Now we will show that if an = α1r
n
1 + α2r

n
2 , then the sequence {an}

is a solution of the recurrence relation. Because r1 and r2 are roots of

r2 − c1r − c2 = 0, it follows that r21 = c1r1 + c2 and r22 = c1r2 + c2.

From these equations, we see that

c1an−1 + c2an−2 = c1(α1r
n−1
1 + α2r

n−1
2) + c2(α1r

n−2
1 + a2r

n−2
2)

= α1r
n−2
1 (c1r1 + c2) + a2r

n−2
2 (c1r2 + c2)

= α1r
n−2
1 r21 + α2r

n−2
2 r22

= α1r
n
1 + α2r

n
2

= an.

This shows that the sequence {an} with an = α1r
n
1 + α2r

n
2 is a solution

of the recurrence relation.

To show that every solution {an} of the recurrence relation an =

c1 an−1 + c2an−2 has an = α1r
n
1 + α2r

n
2 for n = 0, 1, 2, · · · , for some

constants α1 and α2, suppose that {an} is a solution of the recurrence re-

lation, and the initial conditions a0 = C0 and a1 = C1 hold. It will be

shown that there are constants α1 and α2 such that the sequence {an} with

an = α1r
n
1 + α2r

n
2 satisfies these same initial conditions. This requires

134 UNIT 3. ADVANCED COUNTING TECHNIQUES

that

a0 = C0 = α1 + α2,

a1 = C1 = α1r1 + α2r2.

We can solve these two equations for α1 and α2. From the first equa-

tion it follows that α2 = C0−α1. Inserting this expression into the second

equation gives

C1 = α1r1 + (C0 − α1)r2.

Hence,

C1 = α1(r1 − r2) + C0r2.

This shows that

α1 =
C1 − C0r2
r1 − r2

and

α2 = C0 − α1 = C0 −
C1 − C0r2
r1 − r2

=
C0r1 − C1

r − 1− r − 2
,

where these expressions for α1 and α2 depend on the fact that r1 6= r2.

(When r1 = r2, this theorem is not true.) Hence, with these values for

α1 and α2, the sequence {an} with α1r
n
1 + α2r

n
2 satisfies the two initial

conditions.

We know that {an} and {α1r
n
1 +α2r

n
2} are both solutions of the recur-

rence relation an = c1an−1+c2an−2 and both satisfy the initial conditions

when n = 0 and n = 1. Because there is a unique solution of a linear ho-

mogeneous recurrence relation of degree two with two initial conditions,

it follows that the two solutions are the same, that is, an = α1r
n
1 + α2r

n
2

for all nonnegative integers n. We have completed the proof by showing

that a solution of the linear homogeneous recurrence relation with con-

stant coefficients of degree two must be of the form an = α1r
n
1 + α2r

n
2 ,

3.2. SOLVING LINEAR RECURRENCE RELATIONS 135

where α1 and α2 are constants.

Example 164. What is the solution of the recurrence relation

an = an−1 + 2an−2

with a0 = 2 and a1 = 7?

Solution: Theorem 163 can be used to solve this problem. The charac-

teristic equation of the recurrence relation is r2 − r − 2 = 0. Its roots

are r = 2 and r = −1. Hence, the sequence {an} is a solution to the

recurrence relation if and only if

an = α12
n + α2(−1)n,

for some constants α1 and α2. From the initial conditions, it follows that

a0 = 2 = α1 + α2,

a1 = 7 = α1 · 2 + α2 · (−1).

Solving these two equations shows that α1 = 3 and α2 = −1. Hence, the

solution to the recurrence relation and initial conditions is the sequence

{an} with

an = 3 · 2n − (−1)n.

Example 165. Find an explicit formula for the Fibonacci numbers.

Solution: Recall that the sequence of Fibonacci numbers satisfies the re-

currence relation fn = fn−1+fn−2 and also satisfies the initial conditions

f0 = 0 and f1 = 1. The roots of the characteristic equation r2−r−1 = 0

are r1 = (1+
√
5)/2 and r2 = (1−

√
5)/2. Therefore, from Theorem 163

136 UNIT 3. ADVANCED COUNTING TECHNIQUES

it follows that the Fibonacci numbers are given by

fn = α1

(
1 +

√
5

2

)n

+ α2

(
1−

√
5

2

)n

,

for some constants α1 and α2. The initial conditions f0 = 0 and f1 = 1

can be used to find these constants. We have

f0 = α1 + α2 = 0,

f1 = α1

(
1 +

√
5

2

)
+ α2

(
1−

√
5

2

)
= 1.

The solution to these simultaneous equations for α1 and α2 is

α1 = 1/
√
5, α2 = −1/

√
5.

Consequently, the Fibonacci numbers are given by

fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

.

Theorem 166. Let c1 and 2 be real numbers with c2 6= 0. Suppose that

r2 − c1r − c2 = 0 has only one root r0. A sequence {an} is a solution

of the recurrence relation an = c1an−1 + c2an−2 if and only if an =

α1r
n
0 + α2nr

n
0 , for n = 0, 1, 2, · · · , where α1 and α2 are constants.

Example 167. What is the solution of the recurrence relation

an = 6an−1 − 9an−2

with initial conditions a0 = 1 and a1 = 6?

Solution: The only root of r2 − 6r + 9 = 0 is r = 3. Hence, the solution

3.2. SOLVING LINEAR RECURRENCE RELATIONS 137

to this recurrence relation is

an = α13
n + α2n3

n

for some constants α1 and α2. Using the initial conditions, it follows that

a0 = 1 = α1,

a1 = 6 = α1 · 3 + α2 · 3.

Solving these two equations shows that α1 = 1 and α2 = 1. Consequently,

the solution to this recurrence relation and the initial conditions is

an = 3n + n3n.

The General Case: We will now state the general result about the so-

lution of linear homogeneous recurrence relations with constant coeffi-

cients, where the degree may be greater than two, under the assumption

that the characteristic equation has distinct roots.

Theorem 168. Let c1, c2, · · · , ck be real numbers. Suppose that the char-

acteristic equation

rk − c1 r
k−1 − · · · − ck = 0

has k distinct roots r1, r2, · · · , rk. Then a sequence {an}is a solution of

the recurrence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k

if and only if

an = α1r
n
1 + α2r

n
2 + · · ·+ αkr

n
k

138 UNIT 3. ADVANCED COUNTING TECHNIQUES

for n = 0, 1, 2, · · · , where α1, α2, · · · , αk are constants.

Example 169. Find the solution to the recurrence relation

an = 6an−1 − 11an−2 + 6an−3

with the initial conditions a0 = 2, a1 = 5, and a2 = 15.

Solution: The characteristic polynomial of this recurrence relation is

r3 − 6r2 + 11r − 6.

The characteristic roots are r = 1, r = 2, and r = 3, because r3 − 6r2 +

11r − 6 = (r − 1)(r − 2)(r − 3). Hence, the solutions to this recurrence

relation are of the form

an = α1 · 1n + α2 · 2n + α3 · 3n.

To find the constants α1, α2, and α3, use the initial conditions. This gives

a0 = 2 = α1 + α2 + α3,

a1 = 5 = α1 + α2 · 2 + α3 · 3,

a2 = 15 = α1 + α2 · 4 + α3 · 9.

When these three simultaneous equations are solved for α1, α2, and α3,

we find that α1 = 1, α2 = −1, and α3 = 2. Hence, the unique solution

to this recurrence relation and the given initial conditions is the sequence

{an} with

an = 1− 2n + 2 · 3n.

Theorem 170. Let c1, c2, · · · , ck be real numbers. Suppose that the char-

3.2. SOLVING LINEAR RECURRENCE RELATIONS 139

acteristic equation

rk − c1r
k−1 − · · · − ck = 0

has t distinct roots r1, r2, · · · , rt with multiplicities m1,m2, · · · ,mt, re-

spectively, so that mi ≥ 1 for i = 1, 2, · · · , t and m1+m2+ · · ·+mt = k.

Then a sequence {an} is a solution of the recurrence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k

if and only if

an = (α1,0 + α1,1n+ · · ·+ α1,m1−1n
m1−1rn1

+(α2,0 + α2,1n+ · · ·+ a2,m2−1n
m2−1)rn2

+ · · ·+ (αt,0 + αt,1n+ · · ·αt,mt−1n
mt−1)rnt

for n = 0, 1, 2, · · · , where αi,j are constants for 1 ≤ i ≤ t and 0 ≤ j ≤

mi−1.

Example 171. Suppose that the roots of the characteristic equation of a

linear homogeneous recurrence relation are 2, 2, 2, 5, 5, and 9 (that is,

there are three roots, the root 2 with multiplicity three, the root 5 with

multiplicity two, and the root 9 with multiplicity one). What is the form of

the general solution?

Solution: By Theorem 170, the general form of the solution is

(α1,0 + α1,1n+ α1,2n
2)2n + (α2,0 + α2,1n)5

n + α3,09
n.

Example 172. Find the solution to the recurrence relation

an = −3an−1 − 3an−2 − an−3

140 UNIT 3. ADVANCED COUNTING TECHNIQUES

with initial conditions a0 = 1, a1 = −2, and a2 = −1.

Solution: The characteristic equation of this recurrence relation is

r3 + 3r2 + 3r + 1 = 0.

Because r3 + 3r2 + 3r + 1 = (r + 1)3, there is a single root r = −1

of multiplicity three of the characteristic equation. By Theorem 170 the

solutions of this recurrence relation are of the form

an = α1,0(−1)n + α1,1n(−1)n + α1,2n
2(−1)n.

To find the constants α1,0, α1,1 and α1,2, use the initial conditions. This

gives

a0 = 1 = α1,0,

a1 = −2 = −α1,0 − α1,1 − α1,2,

a2 = −1 = α1,0 + 2α1,1 + 4α1,2.

The simultaneous solution of these three equations is α1,0 = 1, α1,1 = 3,

and α1,2 = −2. Hence, the unique solution to this recurrence relation and

the given initial conditions is the sequence {an} with

an = (1 + 3n− 2n2)(−1)n.

3.2.2 Linear Nonhomogeneous Recurrence Relations with Con-

stant Coefficients

We have seen how to solve linear homogeneous recurrence relations with

constant coefficients. Is there a relatively simple technique for solving

a linear, but not homogeneous, recurrence relation with constant coeffi-

3.2. SOLVING LINEAR RECURRENCE RELATIONS 141

cients, such as an = 3an−1 + 2n? We will see that the answer is yes for

certain families of such recurrence relations.

The recurrence relation an = 3an−1 + 2n is an example of a linear

nonhomogeneous recurrence relation with constant coefficients, that

is, a recurrence relation of the form

an = c1an−1 + c2an−2 + · · ·+ ckan−k + F (n),

where c1, c2, · · · , ck are real numbers and F (n) is a function not identi-

cally zero depending only on n. The recurrence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k

is called the associated homogeneous recurrence relation. It plays an

important role in the solution of the nonhomogeneous recurrence relation.

Example 173. Each of the recurrence relations an = an−1 + 2n, an =

an−1 + an−2 + n2 + n+ 1, an = 3an−1 + n3n, and an = an−1 + an−2 +

an−3 + n! is a linear nonhomogeneous recurrence relation with constant

coefficients. The associated linear homogeneous recurrence relations are

an = an−1, an = an−1+an−2, an = 3an−1, and an = an−1+an−2+an−3,

respectively.

Theorem 174. If {a(p)n } is a particular solution of the nonhomogeneous

linear recurrence relation with constant coefficients

an = c1an−1 + c2an−2 + · · ·+ ckan−k + F (n),

then every solution is of the form {a(p)n + a
(h)
n }, where {a(h)n } is a solution

of the associated homogeneous recurrence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k.

142 UNIT 3. ADVANCED COUNTING TECHNIQUES

Proof. Because {a(p)n } is a particular solution of the nonhomogeneous re-

currence relation, we know that

a(p)n = c1a
(p)
n−1 + c2a

(p)
n−2 + · · ·+ cka

(p)
n−k + F (n).

Now suppose that {bn} is a second solution of the nonhomogeneous re-

currence relation, so that

bn = c1bn−1 + c2bn−2 + · · ·+ ckbn−k + F (n).

Subtracting the first of these two equations from the second shows that

bn − a(p)n = c1(bn−1 − a
(p)
n−1 + c2(bn−2 − a

(p)
n−2) + · · ·+ ck(bn−k − a

(p)
n−k).

It follows that {bn−apn} is a solution of the associated homogeneous linear

recurrence, say, {aa(h)n }. Consequently, bn = a
(p)
n + a

(h)
n for all n.

Example 175. Find all solutions of the recurrence relation an = 3an−1+

2n. What is the solution with a1 = 3?

Solution: To solve this linear nonhomogeneous recurrence relation with

constant coefficients, we need to solve its associated linear homogeneous

equation and to find a particular solution for the given nonhomogeneous

equation. The associated linear homogeneous equation is an = 3an−1.

Its solutions are a
(h)
n = α3n, where α is a constant.

We now find a particular solution. Because F (n) = 2n is a polynomial

in n of degree one, a reasonable trial solution is a linear function in n,

say, pn = cn+d, where c and d are constants. To determine whether there

are any solutions of this form, suppose that pn = cn+d is such a solution.

Then the equation an = 3an−1+2n becomes cn+d = 3(c(n−1)+d)+2n.

Simplifying and combining like terms gives (2 + 2c)n+ (2d− 3c) = 0. It

3.2. SOLVING LINEAR RECURRENCE RELATIONS 143

follows that cn+d is a solution if and only if 2+2c = 0 and 2d−3c = 0.

This shows that cn+ d is a solution if and only if c = −1 and d = −3/2.

Consequently, a(p)n = −n− 3/2 is a particular solution.

By Theorem 174 all solutions are of the form

an = a(p)n + a(h)n = −n− 3

2
+ α · 3n,

where α is a constant.

To find the solution with a1 = 3, let n = 1 in the formula we obtained

for the general solution. We find that 3 = −1− 3/2 + 3α, which implies

that α = 11/6. The solution we seek is an = −n− 3/2 + (11/6)3n.

Example 176. Find all solutions of the recurrence relation

an = 5an−1 − 6an−2 + 7n.

Solution: This is a linear nonhomogeneous recurrence relation. The

solutions of its associated homogeneous recurrence relation

an = 5an−1 − 6an−2

are a
(h)
n = α1 · 3n + α2 · 2n, where α1 and α2 are constants. Because

F (n) = 7n, a reasonable trial solution is a
(p)
n = C · 7n, where C is

a constant. Substituting the terms of this sequence into the recurrence

relation implies that C · 7n = 5C · 7n−1 − 6C · 7n−2 + 7n. Factoring out

7n−2, this equation becomes 49C = 35C − 6C + 49, which implies that

20C = 49, or that C = 49/20. Hence, a(p)n = (49/20)7n is a particular

solution. By Theorem 174, all solutions are of the form

an = α1 · 3n + α2 · 2n + (49/20)7n.

144 UNIT 3. ADVANCED COUNTING TECHNIQUES

Theorem 177. Suppose that {an} satisfies the linear nonhomogeneous

recurrence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k + F (n),

where c1, c2, · · · , ck are real numbers, and

F (n) = (btn
t + bt−1n

t−1 + · · ·+ b1n + b0)s
n,

where b0, b1, · · · , bt and s are real numbers. When s is not a root of the

characteristic equation of the associated linear homogeneous recurrence

relation, there is a particular solution of the form

(ptn
t + pt−1n

t−1 + · · ·+ p1n+ p0)s
n.

When s is a root of this characteristic equation and its multiplicity is m,

there is a particular solution of the form

nm(ptn
t + pt−1n

t−1 + · · ·+ p1n+ p0)s
n.

Example 178. What form does a particular solution of the linear nonho-

mogeneous recurrence relation an = 6an−1 − 9an−2 + F (n) have when

F (n) = 3n, F (n) = n3n, F (n) = n22n, and F (n) = (n2 + 1)3n?

Solution: The associated linear homogeneous recurrence relation is

an = 6an−1−9an−2. Its characteristic equation, r2−6r+9 = (r−3)2 =

0, has a single root, 3, of multiplicity two. To apply Theorem 177, with

F (n) of the form P (n)sn, where P (n) is a polynomial and s is a constant,

we need to ask whether s is a root of this characteristic equation.

Because s = 3 is a root with multiplicity m = 2 but s = 2 is not a

root, Theorem 177 tells us that a particular solution has the form p0n
23n

3.2. SOLVING LINEAR RECURRENCE RELATIONS 145

if F (n) = 3n, the form n2(p1n + p0)3n if F (n) = n3n, the form (p2n
2 +

p1n + p0)2
n if F (n) = n22n, and the form n2(p2n

2 + p1n + p0)3
n if

F (n) = (n2 + 1)3n.

Example 179. Let an be the sum of the first n positive integers, so that

an =
n∑

k=1

k.

Note that an satisfies the linear nonhomogeneous recurrence relation

an = an−1 + n.

(To obtain an, the sum of the first n positive integers, from an−1, the sum of

the first n− 1 positive integers, we add n.) Note that the initial condition

is a1 = 1.

The associated linear homogeneous recurrence relation for an is

an = an−1.

The solutions of this homogeneous recurrence relation are given by a(h)n =

c(1)n = c, where c is a constant. To find all solutions of an = an−1 + n,

we need find only a single particular solution. By Theorem 177, because

F (n) = n = n·(1)n and s = 1 is a root of degree one of the characteristic

equation of the associated linear homogeneous recurrence relation, there

is a particular solution of the form n(p1n+ p0) = p1n
2 + p0n.

Inserting this into the recurrence relation gives p1n2 + p0n = p1(n −

1)2+ p0(n− 1)+n. Simplifying, we see that n(2p1− 1)+ (p0− p1) = 0,

which means that 2p1−1 = 0 and p0−p1 = 0, so p0 = p1 = 1/2. Hence,

a(p)n =
n2

2
+

n

2
=

n(n+ 1)

2

146 UNIT 3. ADVANCED COUNTING TECHNIQUES

is a particular solution. Hence, all solutions of the original recurrence

relation an = an−1 + n are given by an = a
(h)
n + a

(p)
n = c+ n(n+ 1)/2.

Because a1 = 1, we have 1 = a1 = c + 1 · 2/2 = c + 1, so c = 0. It

follows that an = n(n+ 1)/2.

Let Us Sum Up

In this section, we discussed about

∗ Solving linear homogeneous recurrence relations.

∗ Linear non homogeneous recurrence relations.

∗ Solving recurrence relations using substitutions.

Check your Progress

1. What is the solution of the recurrence relation an = 6an−1 − 9an−2

with initial conditions a0 = 1 and a1 = 6?

(a) 3n + n3n−1

(b) 3n

(c) 3n−1

(d) 3n + n3n

2. The solution of the recurrence relation an = 3an−1 + 2n when a1 = 3

is

(a) −n− 3
2 +

(
11
6

)
3n

(b)
(
11
6

)
3n

3.3. GENERATING FUNCTIONS 147

(c) 3
2 +

(
11
6

)n
(d) n+ 3

2 +
(
11
6

)n
3.3 Generating Functions

Definition 180. The generating function for the sequence a0, a1, · · · , ak, · · ·

of real numbers is the infinite series

G(x) = a0 + a1x + · · ·+ akx
k + · · · =

∞∑
k=0

akx
k.

Remark 181. The generating function forak given in Definition 180 is

sometimes called the ordinary generating function of {ak} to distin-

guish it from other types of generating functions for this sequence.

Example 182. The generating functions for the sequences {ak} with ak =

3, ak = k+1, and ak = 2k are
∑∞

k=0 3x
k,
∑∞

k=0(k+1)xk, and
∑∞

k=0 2
kxk,

respectively.

Definition 183. Let u be a real number and k a nonnegative integer. Then

the extended binomial coefficient
(
u
k

)
is defined by

(
u

k

)
=

u(u− 1) · · · (u− k + 1)/k! if k > 0

1 if k = 0.

Example 184. Find the values of the extended binomial coefficient
(−2

3

)
and

(
1/2
3

)
.

Solution: Taking u = −2 and k = 3 in Definition 183 gives us(
−2

3

)
=

(−2)(−3)(−4)

3!
= −4.

148 UNIT 3. ADVANCED COUNTING TECHNIQUES

Similarly, taking u = 1/2 and k = 3 gives us(
1/2

3

)
=

(1/2)(1/2− 1)(1/2− 2)

3!
= (1/2)(−1/2)(−3/2)/6

= 1/16.

Example 185. When the top parameter is a negative integer, the extended

binomial coefficient can be expressed in terms of an ordinary binomial

coefficient. To see that this is the case, note that(
−n

r

)
=

(−n)(−n− 1) · · · (−n− r + 1)

r!

=
(−1)nn(n+ 1) · · · (n+ r − 1)

r!

=
(−1)r(n+ r − 1)(n+ r − 2) · · ·n)

r!

= (−1)r
(n+ r − 1)!

r!(n− 1)!

= (−1)r
(
n+ r − 1

r

)
= (−1)rC(n+ r − 1, r).

Theorem 186. THE EXTENDED BINOMIAL THEOREM Let x be a

real number with |x| < 1 and let u be a real number. Then

(1 + x)u =
∞∑
k=0

(
u

k

)
xk.

Example 187. Find the generating functions for (1+x)−n and (1−x)−n,

where n is a positive integer, using the extended binomial theorem.

Solution: By the extended binomial theorem, it follows that

(1 + x)−n =
∞∑
k=0

(
−n

k

)
xk.

3.3. GENERATING FUNCTIONS 149

Using Example 185, which provides a simple formula for
(−n

k

)
, we obtain

(1 + x)−n =
∞∑
k=0

(−1)kC(n+ k − 1, k)xk.

Replacing x by −x, we find that

(1− x)−n =
∞∑
k=0

C(n+ k − 1, k)xk.

3.3.1 Counting Problems and Generating Functions

Example 188. Find the number of solutions of

e1 + e2 + e3 = 17,

where e1, e2, and e3 are nonnegative integers with 2 ≤ e1 ≤ 5, 3 ≤ e2 ≤

6, and 4 ≤ e3 ≤ 7.

Solution: The number of solutions with the indicated constraints is the

coefficient of x17 in the expansion of

(x2 + x3 + x4 + x5)(x3 + x4 + x5 + x6)(x4 + x5 + x6 + x7).

This follows because we obtain a term equal to x17 in the product by

picking a term in the first sum xe1 , a term in the second sum xe2, and a

term in the third sum xe3, where the exponents e1, e2, and e3 satisfy the

equation e1 + e2 + e3 = 17 and the given constraints.

It is not hard to see that the coefficient of x17 in this product is 3.

Hence, there are three solutions.

150 UNIT 3. ADVANCED COUNTING TECHNIQUES

Table 3.1: Useful Generating Functions.

G(x) ak

(1 + x)n =
∑n

k=0C(n, k)xk C(n, k)ak

= 1 + C(n, 1)x+ C(n, 2)x2 + · · ·+ xn

(1 + ax)n =
∑n

k=0C(n, k)akxk C(n, k)ak

= 1 + C(n, 1)ax+ C(n, 2)a2x2 + · · ·+ anxn

(1 + xr)n =
∑n

k=0C(n, k)xrk C(n, k/r) if r|k; 0 otherwise

= 1 + C(n, 1)xr + C(n, 2)x2r + · · ·+ xrn

1−xn+1

1−x =
∑n

k=0 x
k = 1 + x+ x2 + · · ·+ xn 1 if k ≤ n; 0 otherwise

1
1−x =

∑∞
k=0 x

k = 1 + x+ x2 + · · · 1

1
1−ax =

∑∞
k=0 a

kxk = 1 + ax+ a2x2 + · · · ak

1
1−xr =

∑∞
k=0 x

rk = 1 + xr + x2r + · · · 1 if r|k; 0 otherwise

1
1−x)2

=
∑∞

k=0(k + 1)xk = 1 + 2x+ 3x2 + · · · k + 1

1
(1−x)n =

∑∞
k=0C(n+ k − 1, k)xk C(n+ k − 1, k)

= 1 + C(n, 1)x+ C(n+ 1, 2)x2 + · · · = C(n+ k − 1, n− 1)

1
(1+x)n =

∑∞
k=0C(n+ k − 1, k)(−1)kxk (−1)kC(n+ k − 1, k)

= 1− C(n, 1)x+ C(n+ 1, 2)x2 + · · · = (−1)kC(n+ k − 1, n− 1)

1
(1−ax)n =

∑∞
k=0C(n+ k − 1, k)akxk C(n+ k − 1, k)ak

= 1 + C(n, 1)ax+ C(n+ 1, 2)a2x2 + · · · = C(n+ k − 1, n− 1)ak

ex =
∑∞

k=0
xk

k! = 1 + x+ x2

2! +
x3

3! + · · · 1/k!

In(1 + x) =
∑∞

k=1
(−1)k+1)

k xk = x− x2

2 + x3

3 − x4

4 + · · · (−1)k+1/k

Example 189. In how many different ways can eight identical cookies be

distributed among three distinct children if each child receives at least

3.3. GENERATING FUNCTIONS 151

two cookies and no more than four cookies?

Solution: Because each child receives at least two but no more than four

cookies, for each child there is a factor equal to

(x2 + x3 + x4)

in the generating function for the sequence {cn}, where cn is the number

of ways to distribute n cookies. Because there are three children, this

generating function is

(x2 + x3 + x4)3.

We need the coefficient of x8 in this product. The reason is that the x8

terms in the expansion correspond to the ways that three terms can be

selected, with one from each factor, that have exponents adding up to 8.

Furthermore, the exponents of the term from the first, second, and third

factors are the numbers of cookies the first, second, and third children

receive, respectively. Computation shows that this coefficient equals 6.

Hence, there are six ways to distribute the cookies so that each child re-

ceives at least two, but no more than four, cookies.

Example 190. Use generating functions to find the number of k-combinations

of a set with n elements. Assume that the binomial theorem has already

been established.

Solution: : Each of the n elements in the set contributes the term (1+x)

to the generating function f(x) =
∑n

k=0 akx
k. Here f(x) is the generat-

ing function for {ak}, where ak represents the number of k-combinations

of a set with n elements. Hence,

f(x) = (1 + x)n.

152 UNIT 3. ADVANCED COUNTING TECHNIQUES

But by the binomial theorem, we have

f(x) =
∞∑
k=0

(
n

k

)
xk,

where (
n

k

)
=

n!

k!(n− k)!
.

Hence, C(n, k), the number of k-combinations of a set with n elements, is

n!

k!(n− k)!
.

Example 191. Use generating functions to find the number of r-combinations

from a set with n elements when repetition of elements is allowed.

Solution: Let G(x) be the generating function for the sequence {ar},

where ar equals the number of r-combinations of a set with n elements

with repetitions allowed. That is, G(x) =
∑∞

r=0 arx
r. Because we can

select any number of a particular member of the set with n elements when

we form an r-combination with repetition allowed, each of the n elements

contributes (1+x+x2+x3+ · · ·) to a product expansion for G(x). Each

element contributes this factor because it may be selected zero times, one

time, two times, three times, and so on, when an r-combination is formed

(with a total of r elements selected). Because there are n elements in the

set and each contributes this same factor to G(x), we have

G(x) = (1 + x+ x2 + · · ·)n.

As long as |x| < 1, we have 1 + x+ x2 + · · · = 1/(1− x), so

G(x) = 1/(1− x)n = (1− x)−n.

3.3. GENERATING FUNCTIONS 153

Applying the extended binomial theorem (Theorem 166), it follows that

(1− x)−n = (1 + (−x))−n =
∞∑
k=0

(
−n

r

)
(−x)r.

The number of r-combinations of a set with n elements with repetitions

allowed, when r is a positive integer, is the coefficient ar of xr in this sum.

Consequently, using above Example we find that ar equals(
−n

r

)
(−1)r = (−1)rC(n+ r − 1, r) · (−1)r

= C(n+ r − 1, r).

Example 192. Use generating functions to find the number of ways to

select r objects of n different kinds if we must select at least one object of

each kind.

Solution: : Because we need to select at least one object of each kind,

each of the n kinds of objects contributes the factor (x+x2+x3+· · ·)to the

generating function G(x)for the sequence {ar}, where ar is the number of

ways to select r objects of n different kinds if we need at least one object

of each kind. Hence

G(x) = (x+ x2 + x3 + · · ·)n = xn(1 + x+ x2 + · · ·)n = xn/(1− x)n.

Using the extended binomial theorem and above Example, we have

G(x) = xn/(1− x)n

= xn · (1− x)−n

= xn
∞∑
r=0

(
−n

r

)
(−x)r

= xn
∞∑
r=0

(−1)rC(n+ r − 1, r)(−1)rxr

154 UNIT 3. ADVANCED COUNTING TECHNIQUES

=
∞∑
r=0

C(n+ r − 1, r)xn+r

=
∞∑
t=n

C(t− 1, t− n)xt

=
∞∑
r=n

C(r − 1, r − n)xr.

We have shifted the summation in the next-to-last equality by setting

t = n + r so that t = n when r = 0 and n + r − 1 = t − 1, and then

we replaced t by r as the index of summation in the last equality to return

to our original notation. Hence, there are C(r − 1, r − n) ways to select

r objects of n different kinds if we must select at least one object of each

kind.

3.3.2 Exponential Generating Functions

Earlier, we have seen that generating functions can be used for enumer-

ating combinations. It is natural to see whether the idea can be excluded

to permutations. But the first obstracle we face is that in permutations

abc is different from cba whereas selecting a,b,c from a set is the same in

whatever order your select. trying to use a power series for permutation

of three elements a, b, c, we must get

1+(a+b+c)x+(ab+ba+ac+ca+cb)x2+(abc+acb+bac+bca+cab+cba)x3.

But is polynomial is equivalent to 1+ (a+ b+ c)x+(ab+ ba+ ac+ ca+

cb)x2 + 6(abc)x3. We cannot distinguish between abc and bca. Since, we

do not want to discard commutative property in power series, the follow-

ing idea is used for enumerating permutations.

A direct extension of the notion of the enumerators for combinations

3.3. GENERATING FUNCTIONS 155

indicates that an enumerator for the permutation of n distinct objects

would have the form

F (x) = P (n, 0)x0 + P (n, 1)x+ P (n, 2)x2 + P (n, 3)x3 + · · ·+ P (n, r)xr

+ · · ·+ P (n, n)xn

= 1 +
n!

(n− 1)!
x+

n!

(n− 2)!
x2 +

n!

(n− 3)!
x3 +

· · ·+ n!

(n− r)!
xr + · · ·+ n1xn.

Unfortunately, there is no simple closed form expression for the above

function. But we know

(1 + x)n = 1 +

(
n

1

)
x+

(
n

2

)
x2 + · · ·+

(
n

n

)
xn

= 1 +
P (n, 1)

1!
x+

P (n, 2)

2!
x2 + · · ·+ P (n, r)

r!
xr + · · ·+ P (n, n)

n!
xn.

This we call as an exponential generating function. Let (a0, a1, a2, · · · ,r , · · ·)

be a sequence. the function

F (x) = a0 +
a1
1!
x+

a2
2!
x2 +

a3
3!
x3 + · · ·+ ar

r!
xr + · · ·

is called the exponential generating function of the sequence (a0, a1, a2, · · · ar, · · ·).

Thus (1 + x)n is the exponential generating function of the P (n, r)s,

i.e., permutations of r objects out of n objects.

Example 193. The exponential enumerator for the permutation of all p

of p identical objects is xp

p! as there is only one way of doing so. Thus the

exponential enumerator for the permutation of none, one, two, ... , p of p

identical object is

1 +
1

1!
x+

1

2!
x2 + · · ·+ 1

p!
xp.

156 UNIT 3. ADVANCED COUNTING TECHNIQUES

The exponential enumerator for the permutations of one, two, ... , p+q of

p+q objects where p of them are of one kind and q of them are of another

kind is(
1 +

1

1!
x+

1

2!
x2 + · · ·+ 1

p!
xp
)(

1 +
1

1!
x+

1

2!
x2 + · · ·+ 1

q!
xq
)
.

To get the permutations of p + q objects, where p of them are of one kind

and q of them are of another kind, we see the factor xpxq, which is

xp

p!

xq

q!
=

xp+q

p!q!
.

In the expression the answer we expect is given by

a

(p+ q)!
xp+q.

Hence we find a = (p+q)!
p!q! which we know is correct.

Example 194. Let the alphabet consist of {0, 1, 2}. Find the number of

r-digit binary sequences that contain an even number of 0’s.

The exponential enumerators for the permutation of digit 0 is(
1 +

x2

2!
+

x4

4!
+

x6

6!
+ · · ·

)
=

1

2
(ex + e−x).

The exponential enumerator for the permutations of each of the digit 1

and 2 is (
1 +

x

1!
+

x2

2!
+ · · ·

)
= ex.

It follows that the exponential enumerator for the number of binary se-

quences containing an even number of 0’s is

1

2
(ex + e−x)exxx =

1

2
(e3x + ex = 1 +

∞∑
r=1

1

2

(
3r + 1r

r!

)
xr.

3.3. GENERATING FUNCTIONS 157

Hence the number of r-digit ternary sequences that contain an even num-

ber of 0’s is 3r+1
2 .

For example when r = 1, we have the possibilities 1 and 2 and 3+1
2 =

2.

When r = 2 we have possibilities 00, 12, 21,11, 22 and 32+1
2 = 5.

3.3.3 Using Generating Functions to Solve Recurrence Relations

Example 195. Solve the recurrence relation ak = 3ak−1 for k = 1, 2, 3, · · ·

and initial condition a0 = 2.

Solution: Let G(x) be the generating function for the sequence {ak},

that is, G(x) =
∑∞

k=0 akx
k. First note that

xG(x) =
∞∑
k=0

akx
k+1 =

∞∑
k=1

ak−1x
k.

Using the recurrence relation, we see that

G(x)− 3xG(x) =
∞∑
k=0

akx
k − 3

∞∑
k=1

ak−1x
k

= a0 +
∞∑
k=1

(ak − 3ak−1)x
k

= 2,

because a0 = 2 and ak − 3ak−1. Thus,

G(x)− 3xG(x) = (1− 3x)G(x) = 2.

Solving for G(x) shows that G9x) = 2/(1 − 3x). Using the identity

158 UNIT 3. ADVANCED COUNTING TECHNIQUES

1/(1− ax) =
∑∞

k=0 a
kxk, from Table 1.2, we have

G(x) = 2
∞∑
k=0

3kxk =
∞∑
k=0

2 · 3kxk.

Consequently, ak = 2 · 3k.

Example 196. Suppose that a valid codeword is an n-digit number in

decimal notation containing an even number of 0s. Let an denote the

number of valid codewords of length n. We showed that the sequence

{an} satisfies the recurrence relation

an = 8an−1 + 10n−1

and the initial condition a1 = 9. Use generating functions to find an

explicit formula for an.

Solution: To make our work with generating functions simpler, we extend

this sequence by setting a0 = 1; when we assign this value to a0 and use

the recurrence relation, we have a1 = 8a0 + 100 = 8 + 1 = 9, which is

consistent with our original initial condition. (It also makes sense because

there is one code word of length 0the empty string.)

We multiply both sides of the recurrence relation by xn to obtain

anx
n = 8an−1x

n + 10n−1xn.

Let G(x) =
∑∞

n=0 anx
n be the generating function of the sequence a0, a1, a2, · · · .

We sum both sides of the last equation starting with n = 1, to find that

G(x)− 1 =
∞∑
n=1

anx
n =

∞∑
n=1

(8an−1x
n + 10n−1xn)

= 8
∞∑
n=1

an−1x
n +

∞∑
n=1

10n−1xn

3.3. GENERATING FUNCTIONS 159

= 8x
∞∑
n=1

an−1x
n−1 + x

∞∑
n=1

10n−1xn−1

= 8x
∞∑
n=0

anx
n + x

∞∑
n=0

10nxn

= 8xG(x) + x/(1− 10x).

where we have used previous results to evaluate the second summation.

Therefore, we have

G(x)− 1 = 8xG(x) + x/(1− 10x).

Solving for G(x) shows that

G(x) =
1− 9x

(1− 8x)(1− 10x)
.

Expanding the right-hand side of this equation into partial fractions (as

is done in the integration of rational functions studied in calculus) gives

G(x) =
1

2

(
1

1− 8x
+

1

1− 10x

)
.

Using above Examples (once with a = 8 and once with a = 10) gives

G(x) =
1

2

(∞∑
n=0

8nxn +
∞∑
k=0

10nxn

)

=
∞∑
n=0

1

2
(8n + 10n)xn.

Consequently, we have shown that

an =
1

2
(8n + 10n).

160 UNIT 3. ADVANCED COUNTING TECHNIQUES

3.3.4 Proving Identities via Generating Functions

Example 197. Use generating functions to show that

n∑
k=0

C(n, k)2 = C(2n, n)

whenever n is a positive integer.

Solution: : First note that by the binomial theorem C(2n, n) is the coef-

ficient of xn in (1 + x)2n. However, we also have

(1 + x)2n = [(1 + x)n]2

= [C(n, 0) + C(n, 1)x+ C(n, 2)x2 + · · ·+ C(n, n)xn]2.

The coefficient of xn in this expression is

C(n, 0)C(n, n)+C(n, 1)C(n, n−1)+C(n, 2)C(n, n−2)+· · ·+C(n, n)C(n, 0).

This equals
∑n

k=0C(n, k)2, because C(n, n − k) = C(n, k). Because

both C(2n, n) and
∑n

k=0C(n, k)2 represent the coefficient of xn in (1 +

x)2n, they must be equal.

Let Us Sum Up

In this section, we discussed about

∗ Formal power series.

∗ The extended binomial theorem.

∗ Counting problems and generating functions.

∗ Exponential generating functions.

3.3. GENERATING FUNCTIONS 161

∗ Proving identities through generating functions.

Check your Progress

1. The generating function of the sequence 1, 1, 1, 1, · · · is

(a) 1 + x

(b) 1− x

(c) 1
1+x

(d) 1
1−x

2. The generating function of the sequence { 1
k!} is

(a) ex

(b) log x

(c) k + 1

(d) 1
1+x

Summary

In this unit, we discussed about

∗ Applications of recurrence relations.

∗ Dynamic programming.

∗ Algorithms and recurrence relations.

∗ Solving linear recurrence relations.

162 UNIT 3. ADVANCED COUNTING TECHNIQUES

∗ Linear non-homogeneous recurrence relations.

∗ Generating functions.

∗ Solving recurrence relations using generating functions.

Glossary

recurrence relation: a formula expressing terms of a sequence, except

for some initial terms, as a function of one or more previous terms of the

sequence.

initial conditions for a recurrence relation: the values of the terms of a

sequence satisfying the recurrence relation before this relation takes ef-

fect.

dynamic programming: an algorithmic paradigm that finds the solution

to an optimization problem by recursively breaking down the problem into

overlapping subproblems and combining their solutions with the help of

a recurrence relation.

Eratosthenes: a procedure for finding the primes less than a specified

positive integer.

derangement: a permutation of objects such that no object is in its origi-

nal place.

Self Assessment Questions

1. Explain how the Fibonacci numbers are used to solve Fibonacci’s

problem about rabbits.

2. Explain how dynamic programming can be used to schedule talks in

3.3. GENERATING FUNCTIONS 163

a lecture hall from a set of possible talks to maximize overall atten-

dance.

3. Define a linear homogeneous recurrence relation of degree k.

4. State the principle of inclusion-exclusion.

5. Explain how the inclusion-exclusion principle can be used to count

the number of primes not exceeding the positive integer n.

Exercises

1. Find the solutions of the simultaneous system of recurrence relations

an = an−1 + bn−1

bn = an−1 − bn−1

with a0 = 1 and b0 = 2.

2. Find the solution of the recurrence relation an = 3an−1 − 3an−2 +

an−3 + 1 if a0 = 2, a1 = 4, and a2 = 8.

3. Find the solution to the recurrence relation f(n) = f(n/2) + n2 for

n = 2k where k is a positive integer and f(1) = 1.

4. How many bit strings of length six do not contain four consecutive

1s?

5. What is the probability that a bit string of length six chosen at ran-

dom contains at least four 1s?

164 UNIT 3. ADVANCED COUNTING TECHNIQUES

Answers to Check your Progress

Section 3.1: 1)b 2)b

Section 3.2: 1)d 2)a

Section 3.3: 1)d 2)a

Reference:

1. Kenneth H. Rosen, “Discrete Mathematics and its Applications”,

7th Edition, WCB/ McGraw Hill Publications, New Delhi, 2011.

Suggested Readings:

1. Edward A. Bender and S. Gill Williamson, “A Short Course in Dis-

crete Mathematics”, Dover Publications, 2006.

2. M.O. Albertson and J.P. Hutchinson, “Discrete Mathematics with

Algorithms”, John Wiley & Sons, 2008.

3. Rajendra Akerkar and Rupali Akarkar, “Discrete Mathematics”, Pear-

son Education Pvt. Ltd, Singapore, 2004.

4. J. P. Trembley and R. Manohar, “Discrete Mathematical Structures”,

Tata McGraw Hill, New Delhi,1997.

5. Martin Aigner, “A Course in Enumeration”, Springer-Verlag, Hei-

delberg, 2007.

6. J.H. Van Lint and R.M. Wilson, “A Course in Combinatorics”, 2nd

Edition, Cambridge University Press, Cambridge, 2001.

Unit 4

Boolean Algebra

Objectives

1. To learn Boolean expressions an Boolean functions.

2. To find Boolean expressions that represents a Boolean function.

3. To show that all Boolean functions can be represented by using only

one operator.

4. To model the circuitry of electronic devices using Boolean Algebra.

5. To learn Karnaugh maps and the Quine-Mc Cluskey Method to min-

imize Boolean functions.

4.1 Boolean Functions

4.1.1 Introduction

Boolean algebra provides the operations and the rules for working with

the set {0, 1}. Electronic and optical switches can be studied using this

set and the rules of Boolean algebra. The three operations in Boolean

algebra that we will use most are complementation, the Boolean sum, and

165

166 UNIT 4. BOOLEAN ALGEBRA

the Boolean product. The complement of an element, denoted with a bar,

is defined by 0̄ = 1 and 1̄ = 0. The Boolean sum, denoted by + or by OR,

has the following values:

1 + 1 = 1, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0.

The Boolean product, denoted by or by AND, has the following values:

1 · 1 = 1, 1 · 0 = 0, 0 · 1 = 0, 0 · 0 = 0.

Example 198. Find the value of 1 · 0 + (0 + 1).

Solution: Using the definitions of complementation, the Boolean sum,

and the Boolean product, it follows that

1 · 0 + (0 + 1) = 0 + 1̄

= 0 + 0

= 0.

The complement, Boolean sum, and Boolean product correspond to the

logical operators, ⇁, ∨ and ∧, respectively, where 0 corresponds to F

(false) and 1 corresponds to T (true).

Example 199. Translate 1·0+(0 + 1) = 0, the equality found in Example

1, into a logical equivalence.

Solution: We obtain a logical equivalence when we translate each 1 into

a T , each 0 into an F , each Boolean sum into a disjunction, each Boolean

product into a conjunction, and each complementation into a negation.

We obtain

(T ∧ F)∨ ⇁ (T ∨ F) ≡ F.

4.1. BOOLEAN FUNCTIONS 167

Example 200. Translate the logical equivalence (T ∧T)∨ ⇁ F ≡ T into

an identity in Boolean algebra.

Solution: We obtain an identity in Boolean algebra when we translate

each T into a 1, each F into a 0, each disjunction into a Boolean sum,

each conjunction into a Boolean product, and each negation into a com-

plementation. We obtain

(1 · 1) + 0̄ = 1.

4.1.2 Boolean Expressions and Boolean Functions

Let B = {0, 1}. Then Bn = {(x1, x2, · · · , xn)|xi ∈ B for 1 ≤ i ≤ n}

is the set of all possible n-tuples of 0s and 1s. The variable x is called

a Boolean variable if it assumes values only from B, that is, if its only

possible values are 0 and 1. A function from Bn to B is called a Boolean

function of degree n.

Example 201. The function F (x, y) = xy from the set of ordered pairs of

Boolean variables to the set {0, 1} is a Boolean function of degree 2 with

F (1, 1) = 0, F (1, 0) = 1, F (0, 1) = 0, and F (0, 0) = 0. We display

these values of F in Table 4.1.

Boolean functions can be represented using expressions made up from

variables and Boolean operations. The Boolean expressions in the vari-

ables x1, x2, · · · , xn are defined recursively as 0, 1, x1, x2, · · · , xn are

Boolean expressions; if E1 and E2 are Boolean expressions, then Ē1, (E1E2),

and (E1 + E2) are Boolean expressions.

Each Boolean expression represents a Boolean function. The values of

this function are obtained by substituting 0 and 1 for the variables in the

expression.

168 UNIT 4. BOOLEAN ALGEBRA

Table 4.1: For Example 201

x y F(x,y)
1 1 0
1 0 1
0 1 0
0 0 0

Example 202. Find the values of the Boolean function represented by

F (x, y, z) = xy + z̄.

Solution: The values of this function are displayed in Table 4.2.

Table 4.2: For Example 202

x y z xy z̄ F (x, y, z) = xy + z̄
1 1 1 1 0 1
1 1 0 1 1 1
1 0 1 0 0 0
1 0 0 0 1 1
0 1 1 0 0 0
0 1 0 0 1 1
0 0 1 0 0 0
0 0 0 0 1 1

Example 203. The function F (x, y, z) = xy+z̄ from B3 to B from Exam-

ple 202 can be represented by distinguishing the vertices that correspond

to the five 3-tuples (1, 1, 1), (1, 1, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 0),

where F (x, y, z) = 1, as shown in Figure 4.1. These vertices are dis-

played using solid black circles.

Boolean functions F and G of n variables are equal if and only if F (b1, b2, · · · , bn) =

G(b1, b2, · · · , bn) whenever b1, b2, · · · , bn belong to B. Two different Boolean

expressions that represent the same function are called equivalent. For

4.1. BOOLEAN FUNCTIONS 169

Table 4.3: The 16 Boolean Functions of Degree Two.

x y F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

instance, the Boolean expressions xy, xy + 0, and xy · 1 are equiva-

lent. The complement of the Boolean function F is the function F̄ , where

F̄ (x1, · · · , xn) = F (x1, · · · , xn). Let F and G be Boolean functions of

degree n. The Boolean sum F + G and the Boolean product FG are

defined by

(F +G)(x1, · · · , xn) = F (x1, · · · , xn) +G(x1, · · · , xn),

(FG)(x1, · · · , xn) = F (x1, · · · , xn)G(x1, · · · , xn),

A Boolean function of degree two is a function from a set with four

elements, namely, pairs of elements from B = {0, 1}, to B, a set with two

elements. Hence, there are 16 different Boolean functions of degree two.

In Table 4.3 we display the values of the 16 different Boolean functions of

degree two, labeled F1, F2, · · · , F16.

Figure 4.1

Example 204. How many different Boolean functions of degree n are

there?

Solution: From the product rule for counting, it follows that there are

2n different n-tuples of 0s and 1s. Because a Boolean function is an as-

170 UNIT 4. BOOLEAN ALGEBRA

signment of 0 or 1 to each of these 2n different n-tuples, the product rule

shows that there are 22
n

different Boolean functions of degree n.

4.1.3 Identities of Boolean Algebra

There are many identities in Boolean algebra. The most important of

these are displayed in Table 4.4. These identities are particularly useful

in simplifying the design of circuits.

Table 4.4: Boolean Identities

Identity Name
¯̄x = x Law of the double complement
x+ x = x Idempotent laws
x · x = x
x+ 0 = x Identity laws
x · 1 = x
x+ 1 = 1 Domination laws
x · 0 = 0
x+ y = y + x Commutative laws
xy = yx
x+ (y + z) = (x+ y) + z Associative laws
x(yz) = (xy)z
x+ yz = (x+ y)(x+ z) Distributive laws
x(y + z) = xy + xz

(xy) = x̄+ ȳ De Morgan’s laws
(x+ y) = x̄ȳ
x+ xy = x Absorption laws
x(x+ y) = x
x+ x̄ = 1 Unit property
xx̄ = 0 Zero property

Example 205. Show that the distributive law x(y+z) = xy+xz is valid.

Solution: The verification of this identity is shown in Table 4.5. The

identity holds because the last two columns of the table agree.

4.1. BOOLEAN FUNCTIONS 171

Example 206. Translate the distributive law x+ yz = (x+ y)(x+ z) in

Table 4.4 into a logical equivalence.

Solution: To translate a Boolean identity into a logical equivalence, we

change each Boolean variable into a propositional variable. Here we will

change the Boolean variables x, y, and z into the propositional variables

p, q, and r. Next, we change each Boolean sum into a disjunction and each

Boolean product into a conjunction. (Note that 0 and 1 do not appear in

this identity and complementation also does not appear.) This transforms

the Boolean identity into the logical equivalence

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

Table 4.5: Verifying One of the Distribution Laws

x y z y + z xy xz x(y + z) xy + xz
1 1 1 1 1 1 1 1
1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 1
1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0

Example 207. Prove the absorption law x(x + y) = x using the other

identities of Boolean algebra.

Solution: We display steps used to derive this identity and the law used

in each step:

172 UNIT 4. BOOLEAN ALGEBRA

x(x+ y) = (x+ 0)(x+ y) Identity law for the Boolean sum

= x+ 0 · y Distributive law of the Boolean sum over

the Boolean product

= x+ y · 0 Commutative law for the Boolean product

= x+ 0 Domination law for the Boolean product

= x Identity law for the Boolean sum.

4.1.4 Duality

The dual of a Boolean expression is obtained by interchanging Boolean

sums and Boolean products and interchanging 0s and 1s.

Example 208. Find the duals of x(y + 0) and x̄ · 1 + (ȳ + z).

Solution: Interchanging · signs and + signs and interchanging 0s and 1s

in these expressions produces their duals. The duals are x + (y · 1) and

(x+ 0)(yz), respectively.

The dual of a Boolean function F represented by a Boolean expres-

sion is the function represented by the dual of this expression. This dual

function, denoted by F d , does not depend on the particular Boolean ex-

pression used to represent F . An identity between functions represented

by Boolean expressions remains valid when the duals of both sides of the

identity are taken. This result, called the duality principle, is useful for

obtaining new identities.

Example 209. Construct an identity from the absorption law x(x+y) = x

by taking duals.

Solution: Taking the duals of both sides of this identity produces the

identity x+ xy = x, which is also called an absorption law.

4.1. BOOLEAN FUNCTIONS 173

4.1.5 The Abstract Definition of a Boolean Algebra

In this section we have focused on Boolean functions and expressions.

However, the results we have established can be translated into results

about propositions or results about sets.

Definition 210. A Boolean algebra is a set B with two binary operations

∨ and ∧, elements 0 and 1, and a unary operation¯ such that these prop-

erties hold for all x, y, and z in B:

x ∨ 0 = x

x ∧ 1 = x

 Identity laws

x ∨ x̄ = 1

x ∧ x̄ = 0

 Complement laws

(x ∨ y) ∨ z = x ∨ (y ∨ z)

(x ∧ y) ∧ z = x ∧ (y ∧ z)

 Associative laws

x ∨ y = y ∨ x

x ∧ y = y ∧ x

 Commutative laws

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

 Distributive laws

Boolean algebras may also be defined using the notion of a lattice. A

lattice L is a partially ordered set in which every pair of elements x, y

has a least upper bound, denoted by lub(x, y) and a greatest lower bound

denoted by glb(x, y). Given two elements x and y of L, we can define two

operations ∨ and ∧ on pairs of elements of L by x ∨ y = lub(x, y) and

x ∧ y = glb(x, y).

For a lattice L to be a Boolean algebra as specified in Definition 210,

174 UNIT 4. BOOLEAN ALGEBRA

it must have two properties. First, it must be complemented. For a lattice

to be complemented it must have a least element 0 and a greatest element

1 and for every element x of the lattice there must exist an element x such

that x ∨ x = 1 and x ∧ x = 0. Second, it must be distributive. This

means that for every x, y, and z in L, x∨ (y ∧ z) = (x∨ y)∧ (x∨ z) and

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Let Us Sum Up

In this section, we discussed about

∗ Boolean expressions and Boolean functions.

∗ Identities of Boolean Algebra.

∗ The abstract definition of Boolean Algebra.

Check your Progress

1. The value of 1.0 + ¯(0 + 1)

(a) 1

(b) 0

(c) 2

(d) 3

2. The property x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) called

(a) Commutative law

(b) Identity law

4.2. REPRESENTING BOOLEAN FUNCTIONS 175

(c) Associative law

(d) Distributive law

4.2 Representing Boolean Functions

4.2.1 Sum-of-Products Expansions

Example 211. Find Boolean expressions that represent the functions F (x, y, z)

and G(x, y, z), which are given in Table 4.6.

Solution: An expression that has the value 1 when x = z = 1 and y = 0,

and the value 0 otherwise, is needed to represent F . Such an expression

can be formed by taking the Boolean product of x, ȳ, and z. This product,

xȳz, has the value 1 if and only if x = ȳ = z = 1, which holds if and

only if x = z = 1 and y = 0.

To represent G, we need an expression that equals 1 when x = y = 1

and z = 0, or x = z = 0 and y = 1. We can form an expression with these

values by taking the Boolean sum of two different Boolean products. The

Boolean product xyz̄ has the value 1 if and only if x = y = 1 and z = 0.

Similarly, the product x̄yz̄ has the value 1 if and only if x = z = 0 and

y = 1. The Boolean sum of these two products, xyz̄ + x̄yz̄, represents

G, because it has the value 1 if and only if x = y = 1 and z = 0, or

x = z = 0 and y = 1.

Definition 212. A literal is a Boolean variable or its complement. A

minterm of the Boolean variables x1, x2, · · · , xn is a Boolean product

y1y2 · · · yn, where yi = xi or yi = x̄i. Hence, a minterm is a product of n

literals, with one literal for each variable

176 UNIT 4. BOOLEAN ALGEBRA

Table 4.6: For Example 211

x y z F G
1 1 1 0 0
1 1 0 0 1
1 0 1 1 0
1 0 0 0 0
0 1 1 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 0 0

Example 213. Find a minterm that equals 1 if x1 = x3 = 0 and x2 =

x4 = x5 = 1, and equals 0 otherwise.

Solution: The minterm x̄1x2x̄3x4x5 has the correct set of values.

The sum of minterms that represents the function is called the sum-

of-products expansion or the disjunctive normal form of the Boolean

function.

Example 214. Find the sum-of-products expansion for the function F (x, y, z) =

(x+ y)z̄.

Solution: We will find the sum-of-products expansion of F (x, y, z) in

two ways. First, we will use Boolean identities to expand the product and

simplify. We find that

F (x, y, z) = (x+ y)z̄

= xz̄ + yz̄ (Distributive lam)

= x1z̄ + 1yz̄ (Identity law)

= x(y + ȳ)z̄ + (x+ x̄)yz̄ (Unit property)

= xyz̄ + xȳz + xyz̄ + x̄yz̄ (Distributive law)

= xyz̄ + xȳz̄ + x̄yz̄ (Idempotent law)

4.2. REPRESENTING BOOLEAN FUNCTIONS 177

Second, we can construct the sum-of-products expansion by determining

the values of F for all possible values of the variables x, y, and z. These

values are found in Table 4.7. The sum-of products expansion of F is the

Boolean sum of three minterms corresponding to the three rows of this

table that give the value 1 for the function. This gives

F (x, y, z) = xyz̄ + xȳz̄ + x̄yz̄.

It is also possible to find a Boolean expression that represents a Boolean

Table 4.7: For Example 214

x y z x+yx z̄ (x+ y)z̄
1 1 1 1 0 0
1 1 0 1 1 1
1 0 1 1 0 0
1 0 0 1 1 1
0 1 1 1 0 0
0 1 0 1 1 1
0 0 1 0 0 0
0 0 0 0 1 0

function by taking a Boolean product of Boolean sums. The resulting

expansion is called the conjunctive normal form or product-of-sums

expansion of the function. These expansions can be found from sum-of-

products expansions by taking duals.

4.2.2 Functional Completeness

Every Boolean function can be expressed as a Boolean sum of minterms.

Each minterm is the Boolean product of Boolean variables or their com-

plements. This shows that every Boolean function can be represented

using the Boolean operators ·,+, and −. Because every Boolean function

178 UNIT 4. BOOLEAN ALGEBRA

can be represented using these operators we say that the set {·,+,−} is

functionally complete. Can we find a smaller set of functionally com-

plete operators? We can do so if one of the three operators of this set can

be expressed in terms of the other two. This can be done using one of De

Morgans laws. We can eliminate all Boolean sums using the identity

x+ y = ¯̄xȳ,

which is obtained by taking complements of both sides in the second De

Morgan law, and then applying the double complementation law. This

means that the set {·,−} is functionally complete. Similarly, we could

eliminate all Boolean products using the identity

xy = ¯x̄+ ȳ,

which is obtained by taking complements of both sides in the first De

Morgan law, and then applying the double complementation law. Con-

sequently {+,−} is functionally complete. Note that the set {+, ·} is

not functionally complete, because it is impossible to express the Boolean

function F (x) = x using these operators.

We have found sets containing two operators that are functionally

complete. Can we find a smaller set of functionally complete opera-

tors, namely, a set containing just one operator? Such sets exist. De-

fine two operators, the — or NAND operator, defined by 1|1 = 0 and

1|0 = 0|1 = 0|0 = 1; and the ↓ or NOR operator, defined by 1 ↓ 1 =

1 ↓ 0 = 0 ↓ 1 = 0 and 0 ↓ 0 = 1. Both of the sets {|} and {↓} are

functionally complete. To see that {|} is functionally complete, because

{·,−} is functionally complete, all that we have to do is show that both of

the operators · and − can be expressed using just the | operator. This can

4.2. REPRESENTING BOOLEAN FUNCTIONS 179

be done as

x = x|x,

xy = (x|y)|(x|y).

Let Us Sum Up

In this section, we discussed about

∗ Sum-of-products expansion.

∗ Functional completeness.

∗ Simple problems in product -of-sums.

Check your Progress

1. The minterm that equals 1 if x1 = x3 = 0 and x2 = x4 = x5 = 1 and

equals 0 otherwise is

(a) x1x2x3x4x5

(b) x1x̄2x3x̄4x̄5

(c) x̄1x2x3x4x5

(d) x1x2x3x4x̄5

2. xy =

(a) x̄+ ȳ

(b) x̄y

(c) ¯x̄+ ȳ

(d) ¯x+ y

180 UNIT 4. BOOLEAN ALGEBRA

4.3 Logic Gates

4.3.1 Introduction

Boolean algebra is used to model the circuitry of electronic devices. Each

input and each output of such a device can be thought of as a member of

the set {0, 1}. A computer, or other electronic device, is made up of a num-

ber of circuits. Each circuit can be designed using the rules of Boolean

algebra. The basic elements of circuits are called gates. Each type of gate

implements a Boolean operation. In this section we define several types

of gates. Using these gates, we will apply the rules of Boolean algebra to

design circuits that perform a variety of tasks. The circuits that we will

study in this chapter give output that depends only on the input, and not

on the current state of the circuit. In other words, these circuits have no

memory capabilities. Such circuits are called combinational circuits or

gating networks. We will construct combinational circuits using three

Figure 4.2: Basic types of gates.

types of elements. The first is an inverter, which accepts the value of one

Boolean variable as input and produces the complement of this value as

its output. The symbol used for an inverter is shown in Figure 4.2(a). The

input to the inverter is shown on the left side entering the element, and the

output is shown on the right side leaving the element.

The next type of element we will use is the OR gate. The inputs to this

gate are the values of two or more Boolean variables. The output is the

Boolean sum of their values. The symbol used for an OR gate is shown

4.3. LOGIC GATES 181

in Figure 4.2(b). The inputs to the OR gate are shown on the left side

entering the element, and the output is shown on the right side leaving the

element.

The third type of element we will use is the AND gate. The inputs to

this gate are the values of two or more Boolean variables. The output is

the Boolean product of their values. The symbol used for an AND gate

is shown in Figure 4.2(c). The inputs to the AND gate are shown on the

left side entering the element, and the output is shown on the right side

leaving the element.

We will permit multiple inputs to AND and OR gates. The inputs to

each of these gates are shown on the left side entering the element, and

the output is shown on the right side. Examples of AND and OR gates

with n inputs are shown in Figure 4.3.

Figure 4.3: Gates with n Inputs.

4.3.2 Combinations of Gates

Example 215. Construct circuits that produce the following outputs: (a)

(x+ y)x̄, (b) x̄(¯y + z), and (c) (x+ y + z)(x̄ȳz̄).

Solution: Circuits that produce these outputs are shown in Figure 4.4.

182 UNIT 4. BOOLEAN ALGEBRA

Figure 4.4: Circuits that Produce the Outputs Specified in Example 215.

4.3.3 Examples of Circuits

Example 216. A committee of three individuals decides issues for an or-

ganization. Each individual votes either yes or no for each proposal that

arises. A proposal is passed if it receives at least two yes votes. Design a

circuit that determines whether a proposal passes.

Solution: Let x = 1 if the first individual votes yes, and x = 0 if this

individual votes no; let y = 1 if the second individual votes yes, and

y = 0 if this individual votes no; let z = 1 if the third individual votes

yes, and z = 0 if this individual votes no. Then a circuit must be designed

that produces the output 1 from the inputs x, y, and z when two or more of

x, y, and z are 1. One representation of the Boolean function that has these

output values is xy + xz + yz. The circuit that implements this function

is shown in Figure 4.5.

Example 217. Sometimes light fixtures are controlled by more than one

switch. Circuits need to be designed so that flipping any one of the switches

for the fixture turns the light on when it is off and turns the light off when

4.3. LOGIC GATES 183

Figure 4.5: A Circuit for Majority Voting.

it is on. Design circuits that accomplish this when there are two switches

and when there are three switches.

Solution: We will begin by designing the circuit that controls the light

fixture when two different switches are used. Let x = 1 when the first

switch is closed and x = 0 when it is open, and let y = 1 when the second

switch is closed and y = 0 when it is open. Let F (x, y) = 1 when the

light is on and F (x, y) = 0 when it is off. We can arbitrarily decide that

the light will be on when both switches are closed, so that F (1, 1) = 1.

This determines all the other values of F . When one of the two switches

is opened, the light goes off, so F (1, 0) = F (0, 1) = 0. When the other

switch is also opened, the light goes on, so F (0, 0) = 1. Table 4.8 displays

these values. Note that F (x, y) = xy + x̄ȳ. This function is implemented

by the circuit shown in Figure 4.6.

Figure 4.6: A Circuit for a Light Controlled by Two Switches.

184 UNIT 4. BOOLEAN ALGEBRA

Table 4.8: For Example 217

x y F (x, y)
1 1 1
1 0 0
0 1 0
0 0 1

We will now design a circuit for three switches. Let x, y, and z be

the Boolean variables that indicate whether each of the three switches is

closed. We let x = 1 when the first switch is closed, and x = 0 when

it is open; y = 1 when the second switch is closed, and y = 0 when

it is open; and z = 1 when the third switch is closed, and z = 0 when

it is open. Let F (x, y, z) = 1 when the light is on and F (x, y, z) = 0

when the light is off. We can arbitrarily specify that the light be on when

all three switches are closed, so that F (1, 1, 1) = 1. This determines

all other values of F . When one switch is opened, the light goes off,

so F (1, 1, 0) = F (1, 0, 1) = F (0, 1, 1) = 0. When a second switch

is opened, the light goes on, so F (1, 0, 0) = F (0, 1, 0) = F (0, 0, 1) =

1. Finally, when the third switch is opened, the light goes off again, so

F (0, 0, 0) = 0. Table 4.9 shows the values of this function.

The function F can be represented by its sum-of-products expansion

as F (x, y, z) = xyz + xȳz̄ + x̄yz̄ + x̄ȳz. The circuit shown in Figure 4.7

implements this function.

4.3.4 Minimization of Circuits

The goal is to produce Boolean sums of Boolean products that represent

a Boolean function with the fewest products of literals such that these

products contain the fewest literals possible among all sums of products

4.3. LOGIC GATES 185

Figure 4.7: A Circuit for a Light Controlled by Two Switches.

Table 4.9: A Circuit for a Fixture Controlled by Three Switches.

x y z F (x, y, z)
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 0

that represent a Boolean function. Finding such a sum of products is

called minimization of the Boolean function. Minimizing a Boolean

function makes it possible to construct a circuit for this function that uses

the fewest gates and fewest inputs to the AND gates and OR gates in the

circuit, among all circuits for the Boolean expression we are minimizing.

186 UNIT 4. BOOLEAN ALGEBRA

4.3.5 Karnaugh Maps

To reduce the number of terms in a Boolean expression representing a

circuit, it is necessary to find terms to combine. There is a graphical

method, called a Karnaugh map or K-map, for finding terms to combine

for Boolean functions involving a relatively small number of variables.

There are four possible minterms in the sum-of-products expansion of

a Boolean function in the two variables x and y. A K-map for a Boolean

function in these two variables consists of four cells, where a 1 is placed in

the cell representing a minterm if this minterm is present in the expansion.

Cells are said to be adjacent if the minterms that they represent differ in

exactly one literal. For instance, the cell representing xy is adjacent to

the cells representing xy and x̄ȳ. The four cells and the terms that they

represent are shown in Figure 4.8.

Figure 4.8: K-maps in Two Variables.

Example 218. Find the K-maps for (a) xy + x̄y, (b) xȳ + x̄y, and (c)

xȳ + x̄y + x̄ȳ.

Solution: We include a 1 in a cell when the minterm represented by this

cell is present in the sum-of-products expansion. The three K-maps are

shown in Figure 4.9.

Example 219. Simplify the sum-of-products expansions given in Example

218.

4.3. LOGIC GATES 187

Figure 4.9: K-maps for the Sum-of-Products Expansions in Example 218.

Solution: The grouping of minterms is shown in Figure 4.10 using the

K-maps for these expansions. Minimal expansions for these sums-of-

products are (a) y, (b) xȳ + x̄y, and (c) x̄+ ȳ.

Figure 4.10: Simplifying the Sum-of-Products Expansions from Example
219.

To simplify a sum-of-products expansion in three variables, we use the

K-map to identify blocks of minterms that can be combined. Blocks of

two adjacent cells represent pairs of minterms that can be combined into a

product of two literals; 2× 2 and 4× 1 blocks of cells represent minterms

that can be combined into a single literal; and the block of all eight cells

represents a product of no literals, namely, the function 1. In Figure 4.11,

1×2, 2×1, 2×2, 4×1, and 4×2 blocks and the products they represent

are shown.

188 UNIT 4. BOOLEAN ALGEBRA

Figure 4.11: Blocks in K-maps in Three Variables.

The product of literals corresponding to a block of all 1s in the K-map

is called an implicant of the function being minimized. It is called a

prime implicant if this block of 1s is not contained in a larger block of

1s representing the product of fewer literals than in this product.

The goal is to identify the largest possible blocks in the map and cover

all the 1s in the map with the least number of blocks, using the largest

blocks first. The largest possible blocks are always chosen, but we must

always choose a block if it is the only block of 1s covering a 1 in the K-

map. Such a block represents an essential prime implicant. By covering

all the 1s in the map with blocks corresponding to prime implicants we

can express the sum of products as a sum of prime implicants. Note that

there may be more than one way to cover all the 1s using the least number

of blocks.

Example 220 illustrates how K-maps in three variables are used.

Example 220. Use K-maps to minimize these sum-of-products expan-

4.3. LOGIC GATES 189

sions.

(a) xyz̄ + xȳz̄ + x̄yz + x̄ȳz̄.

(b) xȳz + xȳz̄ + x̄ȳz + x̄ȳz̄

(c) xyx+ xyz̄ + xȳz + xȳz̄ + x̄yz + x̄ȳz + x̄ȳz̄

(d) xyz̄ + xȳz̄ + x̄ȳz + x̄ȳz̄

Solution: The K-maps for these sum-of-products expansions are shown

in Figure 4.12. The grouping of blocks shows that minimal expansions

into Boolean sums of Boolean products are (a) xz̄+ ȳz̄+ x̄yz, (b) ȳ+ x̄z,

(c) x + ȳ + z, and (d) xz̄ + x̄ȳ. In part (d) note that the prime implicants

xz̄ and x̄ȳ are essential prime implicants, but the prime implicant ȳz̄ is a

prime implicant that is not essential, because the cells it covers are covered

by the other two prime implicants.

Figure 4.12: Using K-maps in Three Variables.

A K-map in four variables is a square that is divided into 16 cells. The

cells represent the 16 possible minterms in four variables. One of the

ways to form a K-map in four variables is shown in Figure 4.13.

Example 221. Use K-maps to simplify these sum-of-products expansions.

(a) wxyz+wxyz̄+wxȳz̄+wx̄yz+wx̄ȳz+wx̄ȳz̄+w̄xȳz+w̄x̄yz+w̄x̄yz̄

190 UNIT 4. BOOLEAN ALGEBRA

Figure 4.13: K-maps in Four Variables.

Figure 4.14: Blocks in K-maps in Four Variables.

(b) wxȳz̄ + wx̄yz + wx̄yz̄ + wx̄ȳz̄ + w̄xȳz̄ + w̄x̄yz̄ + w̄x̄ȳz̄

(c) wxyz̄+wxȳz̄+wx̄yz+wx̄yz̄+wx̄ȳz̄+ w̄xyz+ w̄xyz̄+ w̄xȳz̄+

w̄xȳz + w̄x̄yz̄ + w̄x̄ȳz̄

Solution: The K-maps for these expansions are shown in Figure 4.15.

Using the blocks shown leads to the sum of products (a) wyz + wxz̄ +

wx̄ȳ + w̄x̄y + w̄xȳz, (b) ȳz̄ + wx̄y + x̄z̄, and (c) z̄ + w̄x + wx̄y. The

reader should determine whether there are other choices of blocks in each

part that lead to different sums of products representing these Boolean

functions.

Figure 4.15: Using K-maps in Four Variables.

4.3. LOGIC GATES 191

4.3.6 The Quine-Mc Cluskey Method

We have seen that K-maps can be used to produce minimal expansions

of Boolean functions as Boolean sums of Boolean products. However, K-

maps are awkward to use when there are more than four variables. Fur-

thermore, the use of K-maps relies on visual inspection to identify terms

to group. For these reasons there is a need for a procedure for simpli-

fying sum-of-products expansions that can be mechanized. The Quine-

McCluskey method is such a procedure. It can be used for Boolean func-

tions in any number of variables. It was developed in the 1950s by W. V.

Quine and E. J. McCluskey, Jr. Basically, the Quine-McCluskey method

consists of two parts. The first part finds those terms that are candidates

for inclusion in a minimal expansion as a Boolean sum of Boolean prod-

ucts. The second part determines which of these terms to actually use. We

will use Example 222 to illustrate how, by successively combining impli-

cants into implicants with one fewer literal, this procedure works.

Example 222. We will show how the Quine-McCluskey method can be

used to find a minimal expansion equivalent to

xyz + xȳz + x̄yz + x̄ȳz + x̄ȳz̄.

We will represent the minterms in this expansion by bit strings. The

first bit will be 1 if x occurs and 0 if x̄ occurs. The second bit will be 1

if y occurs and 0 if ȳ occurs. The third bit will be 1 if z occurs and 0 if z̄

occurs. We then group these terms according to the number of 1s in the

corresponding bit strings. This information is shown in Table 4.10.

Minterms that can be combined are those that differ in exactly one

192 UNIT 4. BOOLEAN ALGEBRA

Table 4.10: Minterms and the corresponding Bit String for Example 222

Minterm Bit String Number of 1s
xyz 111 3
xȳz 101 2
x̄yz 011 2
x̄ȳz 001 1
x̄ȳz̄ 000 0

literal. Hence, two terms that can be combined differ by exactly one in the

number of 1s in the bit strings that represent them. When two minterms

are combined into a product, this product contains two literals. A product

in two literals is represented using a dash to denote the variable that does

not occur. For instance, the minterms xȳz and x̄ȳz, represented by bit

strings 101 and 001, can be combined into yz, represented by the string

-01. All pairs of minterms that can be combined and the product formed

from these combinations are shown in Table 4.11.

Table 4.11: Procedure for Simplification for Example 222

Next, all pairs of products of two literals that can be combined are

combined into one literal. Two such products can be combined if they

contain literals for the same two variables, and literals for only one of

the two variables differ. In terms of the strings representing the products,

these strings must have a dash in the same position and must differ in

exactly one of the other two slots. We can combine the products yz and

yz, represented by the strings −11 and −01, into z, represented by the

string−− 1. We show all the combinations of terms that can be formed in

this way in Table 4.11.

In Table 4.11 we also indicate which terms have been used to form

products with fewer literals; these terms will not be needed in a minimal

4.3. LOGIC GATES 193

expansion. The next step is to identify a minimal set of products needed to

represent the Boolean function. We begin with all those products that were

not used to construct products with fewer literals. Next, we form Table

4.12, which has a row for each candidate product formed by combining

original terms, and a column for each original term; and we put an X in a

position if the original term in the sum-of-products expansion was used to

form this candidate product. In this case, we say that the candidate prod-

uct covers the original minterm. We need to include at least one product

that covers each of the original minterms. Consequently, whenever there

is only one X in a column in the table, the product corresponding to the

row this X is in must be used. From Table 4.12 we see that both z and x̄ȳ

are needed. Hence, the final answer is z + x̄ȳ.

Table 4.12: Terms used to form Products with LowerLiterals for Example
222

xyz x̄yz x̄yz x̄ȳz x̄ȳz̄
z X X X X
x̄ȳ X X

As was illustrated in Example 222, the QuineMcCluskey method uses

this sequence of steps to simplify a sum-of-products expression.

1. Express each minterm in n variables by a bit string of length n with

a 1 in the ith position if xi occurs and a 0 in this position if x̄i occurs.

2. Group the bit strings according to the number of 1s in them.

3. Determine all products in n − 1 variables that can be formed by

taking the Boolean sum of minterms in the expansion. Minterms that

can be combined are represented by bit strings that differ in exactly

one position. Represent these products in n−1 variables with strings

194 UNIT 4. BOOLEAN ALGEBRA

that have a 1 in the ith position if xi occurs in the product, a 0 in this

position if x̄i occurs, and a dash in this position if there is no literal

involving xi in the product.

4. Determine all products in n − 2 variables that can be formed by

taking the Boolean sum of the products in n − 1 variables found in

the previous step. Products in n− 1 variables that can be combined

are represented by bit strings that have a dash in the same position

and differ in exactly one position.

5. Continue combining Boolean products into products in fewer vari-

ables as long as possible.

6. Find all the Boolean products that arose that were not used to form

a Boolean product in one fewer literal.

7. Find the smallest set of these Boolean products such that the sum

of these products represents the Boolean function. This is done

by forming a table showing which minterms are covered by which

products. Every minterm must be covered by at least one product.

The first step in using this table is to find all essential prime impli-

cants. Each essential prime implicant must be included because it

is the only prime implicant that covers one of the minterms. Once

we have found essential prime implicants, we can simplify the table

by eliminating the rows for minterms covered by these prime im-

plicants. Furthermore, we can eliminate any prime implicants that

cover a subset of minterms covered by another prime implicant (as

the reader should verify). Moreover, we can eliminate from the table

the row for a minterm if there is another minterm that is covered by

a subset of the prime implicants that cover this minterm. This pro-

4.3. LOGIC GATES 195

cess of identifying essential prime implicants that must be included,

followed by eliminating redundant prime implicants and identifying

minterms that can be ignored, is iterated until the table does not

change. At this point we use a backtracking procedure to find the

optimal solution where we add prime implicants to the cover to find

possible solutions, which we compare to the best solution found so

far at each step.

Example 223. Use the Quine-McCluskey method to simplify the sum-of-

products expansion wxyz̄+wx̄yz+wx̄yz̄+w̄xyz+w̄xȳz+w̄x̄yz+w̄x̄ȳz.

Solution: We first represent the minterms by bit strings and then group

these terms together according to the number of 1s in the bit strings. This

is shown in Table 4.13. All the Boolean products that can be formed by

taking Boolean sums of these products are shown in Table 4.14.

The only products that were not used to form products in fewer vari-

ables are w̄z, wyz̄, wx̄y, and x̄yz. In Table 4.15 we show the minterms

covered by each of these products. To cover these minterms we must in-

clude w̄z and wyz̄, because these products are the only products that cover

w̄xyz and wxyz̄, respectively. Once these two products are included, we

see that only one of the two products left is needed. Consequently, we can

take either w̄z + wyz̄ + wx̄y or w̄z + wyz̄ + x̄yz as the final answer.

196 UNIT 4. BOOLEAN ALGEBRA

Table 4.13: Minterms and Bit Strings for Example 223

Term Bit String Number of 1s
wxyz̄ 1110 3
wx̄yz 1011 3
w̄xyz 0111 3
wx̄yz̄ 1010 2
w̄xȳz 0101 2
w̄x̄yz 0011 2
w̄x̄ȳz 0001 1

Table 4.14: Procedure for Simplification for Example 223

Table 4.15: Terms used to Form Products with Fewer Literals for Example
223

wxyz̄ wx̄yz w̄xyz wx̄yz̄ w̄xȳz w̄x̄yz w̄x̄ȳz
w̄z X X X X
wyz̄ X X
wx̄y X X
x̄yz X X

Let Us Sum Up

In this section, we discussed about

∗ Combination of Gates.

∗ Examples of circuits.

∗ Minimization of circuits.

∗ Karnaugh Maps.

∗ The Quine-Mc Cluskey method.

4.3. LOGIC GATES 197

Check your Progress

1. The circuit which accepts the value of the Boolean variable as input

and produces the complement of this value as output is called

(a) Combinatorial circuit

(b) AND gate

(c) OR gate

(d) an inverter

2. To find the minimal expansions of Boolean functions in any number of

variables, we use

(a) Logic gates

(b) Quine-Mc Cluskey method

(c) Karnaugh maps

(d) Combinatorial circuits

Summary

In this unit, we discussed about

∗ Boolean functions.

∗ Identities of Boolean Algebra.

∗ Sum-of-product expansion.

∗ Functional completeness.

∗ Logic gates.

198 UNIT 4. BOOLEAN ALGEBRA

∗ Examples of circuits.

∗ Examples of circuits.

∗ Minimization of circuits.

∗ Karnaugh Maps.

∗ Quine-Mc Cluskey method.

Glossary

Boolean variable: a variable that assumes only the values 0 and 1.

dual of a Boolean expression: the expression obtained by interchanging

+ signs and · signs and interchanging 0s and 1’s.

Boolean function of degree n: a function from Bn to B where B =

{0, 1}.

Boolean algebra: a set B with two binary operations ∨ and ∧, elements

0 and 1, and a complementation operator¯that satisfies the identity, com-

plement, associative, commutative, and distributive laws.

literal of the Boolean variable x: either x or x̄.

minterm of x1, x2, · · · , x: a Boolean product y1y2 · · · yn, where each yi

is either xi or x̄i.

sum-of-products expansion (or disjuctive normal form: the representa-

tion of a Boolean function as a disjunction of minterms.

functionally complete: a set of Boolean operators is called functionally

complete if every Boolean function can be represented using these opera-

tors.

half adder: a circuit that adds two bits, producing a sum bit.

4.3. LOGIC GATES 199

full adder: a circuit that adds two bits and a carry, producing a sum bit

and a carry bit.

Self Assessment Questions

1. How many Boolean functions of degree two are there?

2. Give a recursive definition of the set of Boolean expressions.

3. Explain how to construct the sum-of-products expansion of a Boolean

function.

4. What does it mean for a set of operations to be functionally com-

plete?

5. Explain how to build a circuit for a light controlled by two switches

using OR gates, AND gates, and inverters.

Exercises

1. Given an example of a self-dual Boolean function of three variables.

2. Show that if F and G are Boolean functions of degree n, then

a) F ≤ F +G b) FG ≤ F .

3. Show that if F,G, and H are Boolean functions of degree n, then

F +G ≤ H if and only if F ≤ H and G ≤ H .

4. Show that x� y = xy + x̄y.

5. Is it always true that (x� y)� z = x� (y � z)?

200 UNIT 4. BOOLEAN ALGEBRA

Answers to Check your Progress

Section 4.1: 1)b 2)d

Section 4.2: 1)c 2)c

Section 4.3: 1)d 2)b

Reference:

1. Kenneth H. Rosen, “Discrete Mathematics and its Applications”,

7th Edition, WCB/ McGraw Hill Publications, New Delhi, 2011.

Suggested Readings:

1. Edward A. Bender and S. Gill Williamson, “A Short Course in Dis-

crete Mathematics”, Dover Publications, 2006.

2. M.O. Albertson and J.P. Hutchinson, “Discrete Mathematics with

Algorithms”, John Wiley & Sons, 2008.

3. Rajendra Akerkar and Rupali Akarkar, “Discrete Mathematics”, Pear-

son Education Pvt. Ltd, Singapore, 2004.

4. J. P. Trembley and R. Manohar, “Discrete Mathematical Structures”,

Tata McGraw Hill, New Delhi,1997.

5. Martin Aigner, “A Course in Enumeration”, Springer-Verlag, Hei-

delberg, 2007.

6. J.H. Van Lint and R.M. Wilson, “A Course in Combinatorics”, 2nd

Edition, Cambridge University Press, Cambridge, 2001.

Unit 5

Modelling Computation

Objectives

1. To introduce finite-state machines that produce output.

2. To apply finite-state machines in language recognition.

3. To learn Turing machines and its importance.

4. To discuss computational complexcity, computability and decidabil-

ity.

5. To measure the complexcity of algorithms.

5.1 Finite-State Machines with Output

Definition 224. A finite-state machine M = (S, I, O, f, g, s0) consists of a

finite set S of states, a finite input alphabet I, a finite output alphabet O, a

transition function f that assigns to each state and input pair a new state,

an output function g that assigns to each state, and input pair an output,

and an initial state s0.

201

202 UNIT 5. MODELLING COMPUTATION

Let M = (S, I, O, f, g, s0) be a finite-state machine. We can use a state

table to represent the values of the transition function f and the output

function g for all pairs of states and input.

Example 225. The state table shown in Table 1.1 describes a finite-state

machine with S = {s0, s1, s2, s3}, I = {0, 1}, and O = {0, 1}. The val-

ues of the transition function f are displayed in the first two columns, and

the values of the output function g are displayed in the last two columns.

Another way to represent a finite-state machine is to use a state dia-

gram, which is a directed graph with labeled edges. In this diagram, each

state is represented by a circle. Arrows labeled with the input and output

pair are shown for each transition.

Example 226. Construct the state diagram for the finite-state machine

with the state table shown in Table 1.1. The state diagram for this machine

is shown in Figure 1.1.

Solution: The state diagram for this machine is shown in Figure 1.1.

Figure 5.1: The State Diagram for the Finite-State Machine Shown in
Table 1.1.

5.1. FINITE-STATE MACHINES WITH OUTPUT 203

Table 5.1

State

f g

Input Input

0 1 0 1

s0 s1 s0 1 0

s1 s3 s0 1 1

s2 s1 s2 0 1

s3 s2 s1 0 0

Example 227. Construct the state table for the finite-state machine with

the state diagram shown in Figure 1.2.

Solution: The state table for this machine is shown in Table 1.2.

Figure 5.2: A finite-state machine.

204 UNIT 5. MODELLING COMPUTATION

Table 5.2

State

f g

Input Input

0 1 0 1

s0 s1 s3 1 0

s1 s1 s2 1 1

s2 s3 s4 0 0

s3 s1 s0 0 0

s4 s3 s4 0 0

Example 228. Find the output string generated by the finite-state machine

in Figure 1.2 if the input string is 101011.

solution: The output obtained is 001000. The successive states and out-

puts are shown in Table 1.3.

Table 5.3

Input 1 0 1 0 1 1 -

State s0 s3 s1 s2 s3 s0 s3

Output 0 0 1 0 0 0 -

Example 229. An important element in many electronic devices is a unit-

delay machine, which produces as output the input string delayed by a

specified amount of time. How can a finite-state machine be constructed

that delays an input string by one unit of time, that is, produces as output

the bit string 0x1x2 · · · xk−1 given the input bit string x1x2 · · · xk?

solution: A delay machine can be constructed that has two possible in-

5.1. FINITE-STATE MACHINES WITH OUTPUT 205

puts, namely, 0 and 1. The machine must have a start state s0. Because

the machine has to remember whether the previous input was a 0 or a 1,

two other states s1 and s2 are needed, where the machine is in state s1 if

the previous input was 1 and in state s2 if the previous input was 0. An

output of 0 is produced for the initial transition from s0. Each transition

from s1 gives an output of 1, and each transition from s2 gives an output

of 0. The output corresponding to the input of a string x1 · · ·xk is the

string that begins with 0, followed by x1, followed by x2, · · · ending with

xk − 1. The state diagram for this machine is shown in Figure 1.3.

Figure 5.3: A unit-delay machine

Example 230. Produce a finite-state machine that adds two positive inte-

gers using their binary expansions.

solution: When (xn · · · x1x0)2 and (yn · · · y1y0)2 are added, the following

procedure is followed. First, the bits x0 and y0 are added, producing a

sum bit z0 and a carry bit c0. This carry bit is either 0 or 1. Then, the bits

x1 and y1 are added, together with the carry c0. This gives a sum bit z1

and a carry bit c1. This procedure is continued until the nth stage, where

xn, yn, and the previous carry cn−1 are added to produce the sum bit zn

and the carry bit cn, which is equal to the sum bit zn+1.

206 UNIT 5. MODELLING COMPUTATION

A finite-state machine to carry out this addition can be constructed

using just two states. For simplicity we assume that both the initial bits

xn and yn are 0 (otherwise we have to make special arrangements con-

cerning the sum bit zn+1). The start state s0 is used to remember that the

previous carry is 0 (or for the addition of the rightmost bits). The other

state, s1, is used to remember that the previous carry is 1.

Because the inputs to the machine are pairs of bits, there are four

possible inputs. We represent these possibilities by 00 (when both bits are

0), 01 (when the first bit is 0 and the second is 1), 10 (when the first bit is

1 and the second is 0), and 11 (when both bits are 1). The transitions and

the outputs are constructed from the sum of the two bits represented by

the input and the carry represented by the state. For instance, when the

machine is in state s1 and receives 01 as input, the next state is s1 and the

output is 0, because the sum that arises is 0 + 1 + 1 = (10)2. The state

diagram for this machine is shown in Figure 1.4.

Figure 5.4: A Finite-State Machine for Addition.

Example 231. In a certain coding scheme, when three consecutive 1s

appear in a message, the receiver of the message knows that there has

been a transmission error. Construct a finite-state machine that gives a 1

5.1. FINITE-STATE MACHINES WITH OUTPUT 207

as its current output bit if and only if the last three bits received are all 1s.

solution:Three states are needed in this machine. The start state s0 re-

members that the previous input value, if it exists, was not a 1. The state

s1 remembers that the previous input was a 1, but the input before the

previous input, if it exists, was not a 1. The state s2 remembers that the

previous two inputs were 1s.

An input of 1 takes s0 to s1, because now a 1, and not two consecutive

1s, has been read; it takes s1 to s2, because now two consecutive 1s have

been read; and it takes s2 to itself, because at least two consecutive 1s

have been read. An input of 0 takes every state to s0, because this breaks

up any string of consecutive 1s. The output for the transition from s2 to

itself when a 1 is read is 1, because this combination of input and state

shows that three consecutive 1s have been read. All other outputs are 0.

The state diagram of this machine is shown in Figure 1.5.

Figure 5.5: A Finite-State Machine That Gives an Output of 1 If and Only
If the Input String Read So Far Ends with 111.

Definition 232. Let M = (S, I, O, f, g, s0) be a finite-state machine and

L ⊆ I∗. We say that M recognizes (or accepts) L if an input string x

belongs to L if and only if the last output bit produced by M when given x

as input is a 1.

208 UNIT 5. MODELLING COMPUTATION

Let Us Sum Up

In this section, we discussed about

∗ Finite-state machines with output.

∗ Finite-state machine that adds two positive integers.

∗ Types of finite-state machines.

Check your Progress

1. In state diagram, each state is represented by

(a) Arrows

(b) Circle

(c) 1

(d) 0

2. The components of computers can be modeled using

(a) Boolean Algebra

(b) Electronic circuits

(c) Finite-State machines

(d) Logic gates

5.2. FINITE-STATE MACHINES WITH NO OUTPUT 209

5.2 Finite-State Machines with No Output

5.2.1 Set of Strings

Definition 233. Suppose that A and B are subsets of V ∗, where V is a

vocabulary. The concatenation of A and B, denoted by AB, is the set of all

strings of the form xy, where x is a string in A and y is a string in B.

Example 234. Let A = {0, 11} and B = {1, 10, 110}. Find AB and BA.

Solution: The set AB contains every concatenation of a string in A and a

string in B. Hence, AB = {01, 010, 0110, 111, 1110, 11110}. The set BA

contains every concatenation of a string in B and a string in A. Hence,

BA = {10, 111, 100, 1011, 1100, 11011}.

Example 235. Let A = {1, 00}. Find An for n = 0, 1, 2, and 3.

Solution: We have A0 = {λ} and A1 = A0A = {λ}A = {1, 00}. To

find A2 we take concatenations of pairs of elements of A. This gives A2 =

{11, 100, 001, 0000}. To find A3 we take concatenations of elements in A2

and A; this gives A3 = {111, 1100, 1001, 10000, 0011, 00100, 00001, 000000}.

Definition 236. Suppose that A is a subset of V ∗. Then the Kleene closure

of A, denoted by A∗, is the set consisting of concatenations of arbitrarily

many strings from A. That is, A∗ =
⋃∞

k=0A
k.

Example 237. What are the Kleene closures of the sets A = {0}, B =

{0, 1}, and C = {11}?

Solution: The Kleene closure of A is the concatenation of the string 0

with itself an arbitrary finite number of times. Hence, A∗ = {0n|n =

0, 1, 2, · · · }. The Kleene closure of B is the concatenation of an arbitrary

number of strings, where each string is either 0 or 1. This is the set of

210 UNIT 5. MODELLING COMPUTATION

all strings over the alphabet V = {0, 1}. That is, B∗ = V ∗. Finally, the

Kleene closure break of C is the concatenation of the string 11 with itself

an arbitrary number of times. Hence, C∗ is the set of strings consisting of

an even number of 1s. That is, C∗ = {12n|n = 0, 1, 2, · · · }.

5.2.2 Finite-State Automata

We will now give a definition of a finite-state machine with no output.

Such machines are also called finite-state automata.

Definition 238. A finite-state automaton M = (S, I, f, s0, F) consists of

a finite set S of states, a finite input alphabet I , a transition function f that

assigns a next state to every pair of state and input (so that f : S×I → S),

an initial or start state s0, and a subset F of S consisting of final (or

accepting states).

Example 239. Construct the state diagram for the finite-state automa-

ton M = (S, I, f, s0, F), where S = {s0, s1, s2, s3}, I = {0, 1}, F =

{s0, s3}, and the transition function f is given in Table 1.4.

Solution: The state diagram is shown in Figure 1.6. Note that because

both the inputs 0 and 1 take s2 to s0, we write 0,1 over the edge from s2

to s0.

5.2. FINITE-STATE MACHINES WITH NO OUTPUT 211

Figure 5.6: The State Diagram for a Finite-State Automaton.

Table 5.4

State

f

Input

0 1

s0 s0 s1

s1 s0 s2

s2 s0 s0

s3 s2 s1

5.2.3 Language Recognition by Finite-State Machines

Definition 240. A string x is said to be recognized or accepted by the

machine M = (S, I, f, s0, F) if it takes the initial state s0 to a final state,

that is, f(s0, x) is a state in F . The language recognized or accepted

by the machine M , denoted by L(M), is the set of all strings that are

recognized by M . Two finite-state automata are called equivalent if they

recognize the same language.

212 UNIT 5. MODELLING COMPUTATION

Designing Finite-State Automata

Example 241. Construct deterministic finite-state automata that recog-

nize each of these languages.

(a) the set of bit strings that begin with two 0s

(b) the set of bit strings that contain two consecutive 0s

(c) the set of bit strings that do not contain two consecutive 0s

(d) the set of bit strings that end with two 0s

(e) the set of bit strings that contain at least two 0s

Solution: (a) Our goal is to construct a deterministic finite-state automa-

ton that recognizes the set of bit strings that begin with two 0s. Besides

the start state s0, we include a non final state s1; we move to s1 from s0

if the first bit is a 0. Next, we add a final state s2, which we move to from

s1 if the second bit is a 0. When we have reached s2 we know that the

first two input bits are both 0s, so we stay in the state s2 no matter what

the succeeding bits (if any) are. We move to a nonfinal state s3 from s0 if

the first bit is a 1 and from s1 if the second bit is a 1. The reader should

verify that the finite-state automaton in Figure 1.7(a) recognizes the set of

bit strings that begin with two 0s.

(b) Our goal is to construct a deterministic finite-state automaton that

recognizes the set of bit strings that contain two consecutive 0s. Besides

the start state s0, we include a nonfinal state s1, which tells us that the

last input bit seen is a 0, but either the bit before it was a 1, or this bit

was the initial bit of the string. We include a final state s2 that we move

to from s1 when the next input bit after a 0 is also a 0. If a 1 follows a

0 in the string (before we encounter two consecutive 0s), we return to s0

5.2. FINITE-STATE MACHINES WITH NO OUTPUT 213

Figure 5.7: Deterministic Finite-State Automata Recognizing the Lan-
guages

and begin looking for consecutive 0s all over again. The reader should

verify that the finite-state automaton in Figure 1.7(b) recognizes the set of

bit strings that contain two consecutive 0s.

(c) Our goal is to construct a deterministic finite-state automaton that

recognizes the set of bit strings that do not contain two consecutive 0s.

Besides the start state s0, which should be a final state, we include a final

state s1, which we move to from s0 when 0 is the first input bit. When an

input bit is a 1, we return to, or stay in, state s0. We add a state s2, which

we move to from s1 when the input bit is a 0. Reaching s2 tells us that

we have seen two consecutive 0s as input bits. We stay in state s2 once

we have reached it; this state is not final. The reader should verify that

the finite-state automaton in Figure 1.7(c) recognizes the set of bit strings

that do not contain two consecutive 0s.

(d) Our goal is to construct a deterministic finite-state automaton that

recognizes the set of bit strings that end with two 0s. Besides the start

state s0, we include a nonfinal state s1, which we move to if the first bit is

214 UNIT 5. MODELLING COMPUTATION

0. We include a final state s2, which we move to from s1 if the next input

bit after a 0 is also a 0. If an input of 0 follows a previous 0, we stay in

state s2 because the last two input bits are still 0s. Once we are in state s2,

an input bit of 1 sends us back to s0, and we begin looking for consecutive

0s all over again. We also return to s0 if the next input is a 1 when we

are in state s1. The reader should verify that the finite-state automaton in

Figure 1.7 (d) recognizes the set of bit strings that end with two 0s.

(e) Our goal is to construct a deterministic finite-state automaton that

recognizes the set of bit strings that contain two 0s. Besides the start

state, we include a state s1, which is not final; we stay in s0 until an input

bit is a 0 and we move to s1 when we encounter the first 0 bit in the input.

We add a final state s2, which we move to from s1 once we encounter a

second 0 bit. Whenever we encounter a 1 as input, we stay in the current

state. Once we have reached s2, we remain there. Here, s1 and s2 are used

to tell us that we have already seen one or two 0s in the input string so

far, respectively. The reader should verify that the finite-state automaton

in Figure 1.7 (e) recognizes the set of bit strings that contain two 0s.

Example 242. Construct a deterministic finite-state automaton that rec-

ognizes the set of bit strings that contain an odd number of 1s and that

end with at least two consecutive 0s.

Solution: We can build a deterministic finite-state automaton that recog-

nizes the specified set by including states that keep track of both the parity

of the number of 1 bits and whether we have seen no, one, or at least two

0s at the end of the input string.

The start state s0 can be used to tell us that the input read so far con-

tains an even number of 1s and ends with no 0s (that is, is empty or ends

with a 1). Besides the start state, we include five more states. We move to

5.2. FINITE-STATE MACHINES WITH NO OUTPUT 215

states s1, s2, s3, s4, and s5, respectively, when the input string read so far

contains an even number of 1s and ends with one 0; when it contains an

even number of 1s and ends with at least two 0s; when it contains an odd

number of 1s and ends with no 0s; when it contains an odd number of 1s

and ends with one 0; and when it contains an odd number of 1s and ends

with two 0s. The state s5 is a final state.

The reader should verify that the finite-state automaton in Figure 1.8

recognizes the set of bit strings that contain an odd number of 1s and end

with at least two consecutive 0s

Figure 5.8: A Deterministic Finite-State Automaton Recognizing the Set
of Bit Strings Containing an Odd Number of 1s and Ending with at Least
Two 0s.

Equivalent Finite-State Automata

Two finite state automata are equivalent if they recognize the same lan-

guage. Example 243 provides an example of two equivalent deterministic

finite-state machines.

Example 243. Show that the two finite-state automata M0 and M1 shown

in Figure 1.9 are equivalent.

216 UNIT 5. MODELLING COMPUTATION

Figure 5.9: M0 and M1 Are Equivalent Finite-State Automata

Solution: For a string x to be recognized by M0, x must take us from s0

to the final state s1 or the final state s4. The only string that takes us from

s0 to s1 is the string 1. The strings that take us from s0 to s4 are those

strings that begin with a 0, which takes us from s0 to s2, followed by zero

or more additional 0s, which keep the machine in state s2, followed by a

1, which takes us from state s2 to the final state s4. All other strings take

us from s0 to a state that is not final. We conclude that L(M0) is the set of

strings of zero or more 0 bits followed by a final 1.

For a string x to be recognized by M1, x must take us from s0 to the

final state s1. So, for x to be recognized, it must begin with some number

of 0s, which leave us in state s0, followed by a 1, which takes us to the

final state s1. A string of all zeros is not recognized because it leaves us in

5.2. FINITE-STATE MACHINES WITH NO OUTPUT 217

state s0, which is not final. All strings that contain a 0 after 1 are not rec-

ognized because they take us to state s2, which is not final. It follows that

L(M1) is the same as L(M0). We conclude that M0 and M1 are equiva-

lent. Note that the finite-state machine M1 only has three states. No finite

state machine with fewer than three states can be used to recognize the set

of all strings of zero or more 0 bits followed by a 1. The construction of

a finite-state automaton with the fewest states possible among all finite-

state automata equivalent to a given finite-state automaton, is known as

machine minimization.

5.2.4 Theorem (Myhill-Nerode Theorem)

The following three statement one equivalent.

1. L ⊆ Σ∗ is accepted by a DFSA.

2. L is the union of some of the equivalance classes of a right irrvariant

equivalance relation of finite index on Σ∗.

3. Let equivalance relation R
′

be defined over Σ∗ as follows: xR
′
y if

and only if, for all z in Σ∗, xz is in L exactly when yz is in L. Then

R
′
is of finite index.

Proof. We shall prove 1 → 2, 2 → 3, 3 → 1.

1 → 2. Let L be accepted by a FSA M = (S,
∑

, δ, s0, F). Define a

relation R on Σ∗ such that xRy if δ(s0, x) = δ(s0, y). R is an equivalence

relation as equality relation is reflexive, symmetric and transitive.

So R divide Σ∗ into equivalence classes. The set of strings which take

the machine from s0 to a particular state q are in one equivalence class.

The number of equivalence classes is therefore equivalent to the number

218 UNIT 5. MODELLING COMPUTATION

of states of M , assuming every state is reachable from 0. It can be seen

that this equivalence relation is right invariant.

i.e., xRy → xzRyz for all z ∈ Σ∗

δ(s0, x) = δ(s0, y) if xRY

δ(s0, xz) = δ(δ(s0, x), z)

= δ(δ(s0, y), z)

= δ(s0, yz)

∴ xzRyz.

L is the union of those equivalence classes of R which correspond to

final states of M .

2 → 3 Assume 2 of the theorem. Let E be the equivalence relation

considered. Let R
′

be defined as given in the statement of the theorem.

We can prove that xEy → xR
′
y.

Let xEy. Then xz Eyz for all x ∈ Σ∗ · xz and yz are in the same

equivalence class of E. Hence xz and yz are both in L or both are not in

L as L is the union of some of the equivalence classes of E. Hence xR
′
y.

Thus we note that any equivalence class of E is completely contained

in one equivalence class of R
′
. Therefore, since E is of finite index, R

′
is

of finite index too.

3 → 1

We first show that R
′
is right invariant., xR

′
y if for all z in Σ∗, xz is in

L exactly when yz is in L. We can also write it as follows:

xR
′
y if for all w, z in Σ∗xwz is in L exactly when ywz is in L.

Hence it follows xwR
′
yw.

Hence R
′
is right invariant.

5.2. FINITE-STATE MACHINES WITH NO OUTPUT 219

Let {x} denote the equivalence class of R
′
to which x belongs.

Construct a DFSA ML = (S
′
Σ, δ

′
, s

′

0, F
′
). S

′
contains one state cor-

responding to each equivalence class of R
′ · [ε] corresponds to s

′

0. F
′
cor-

responds to those states [x], x ∈ L. δ
′

is defined as follows: δ
′
([x], a) =

[xa].

This definition is consistent as R
′

is right invariant. Suppose x and y

belong to the same equivalence class of R
′
. Then xa and ya will belong

to the same equivalence class of R
′
. If x ∈ L, [x] is a final state of ML.

the automaton ML accepts L.

Example 244. Consider the FSA M given in Figure 1.10. The set of

strings having at least one a will be accepted {a, b, c}∗ is divide into three

equivalence classes.

C1, the set of strings which take the machine from s0 to s0 − {b, c}∗

C2, the set of strings which take the machine from s0 to s1-set of strings

having odd number of a’s.

C3 the set of strings which take the machine from s0 to s2-set of strings

having even number of a’s

It is see that L(M) = C2 ∪ C3. We note that

Ifx ∈ C1 and y ∈ C2, then xb ∈ C1 and yb ∈ C2, xb /∈ L, yb ∈ L.

∴ x/R
′
y.

Similarly it can be seen that if x ∈ C1 and y ∈ C3

x /∈ R
′
y.

Butif x ∈ C2 and y ∈ C3, xR
′
y.

So in R
′
C2 and C3 are merged.

If we construct the automaton as given in the theorem we get, the au-

tomaton in figure 1.11.

220 UNIT 5. MODELLING COMPUTATION

Figure 5.10: Figure for Example 244

Figure 5.11: Figure for Example 244

Theorem 245. The minimum state automaton accepting a regular set L

is unique upto an isomorphism and is given by ML of the proof of Myhill-

Nerode Theorem.

Proof. In the proof of Myhill-Nerode theorem, we started with M and

found equivalence relation R, moved to R
′

and constructed ML. The

index of R
′

is less than or equal to the index of R. The number of states

of M is the index of R and the number of states of ML is the index of R
′
.

If M and ML have the same number of states, then we can find a mapping

θ : S → S
′
such that if

θ(q) = q
′
θ(δ(q, a)) = δ

′
(q

′
, a).

This is achieved by mapping the initial state of M into initial state of

ML · θ(s0) = s
′

0. If q is in s, then ∃x in Σ∗ such that δ(s0, x) = q · q i

mapped on to q
′

where δ
′
(s

′

0, x) = q
′
. This is a consistent definition. For

if δ(q, a) = p and δ
′
(q

′
, a) = p

′
, then δ(s0, xa) =

′
and θ(p) = p

′
.

5.2. FINITE-STATE MACHINES WITH NO OUTPUT 221

5.2.5 Minimization of DFSA

Let M = (S,Σ, δ, s0, F) be a DFSA. Let v be an equivalence relation on

S such that p v q, if and only if for each input string x, δ(p, x) ∈ F if

and only if δ(q, x) ∈ F . The meaning of this is that for any x, δ(p, x) and

δ(q, x) are both in F or both are not in F . If for a string x, δ(p, x) is in

δ(q, x) is not in F or the other way round, we say p and q are distinguish-

able by x.

If p v q then δ(p, a) v δ(q, a).

If δ(p, a) = r and δ(q, a) = s and r and s are distinguishable by x,

then p and q are distinguishable by ax.

Algorithm to find minimum DFSA for M = (δ,Σ, δ, s0, F).

We partition the set of states in M as follows:

1. Divide S into non final states. F and K − F . Any state in F is

distinguishable from a state is K − F by λ.

2. Consider the set of states in a block. Consider the successors of

them for each a in Σ. If they belong to different blocks, split this block

into two or more blocks, depending on the successors of the states.

3. Repeat step 2 till no more splitting is possible.

4. For each block Bi, consider a state pi. Construct M
′
= (S,Σ, δ

′
, s

′

0, F
′
)

where S
′
= {pi|Bi is a block of the partition obtained in step 2 }, s

′

0 cor-

responds to the block containing s0. δ(pi, a) = pj , if there exists qiεBi

and qjεBj such that δ(qi, a) = qj . F
′

consists of states corresponding to

the blocks containing states in F .

Example 246. Consider the previous example splitting s̄0, s̄1, s̄2 in to final

and non final states we get s̄0 and s̄1, s̄2. No further split is possible, so

we get the minimum automaton.

222 UNIT 5. MODELLING COMPUTATION

Figure 5.12: Figure for Example 246

5.2.6 Nondeterministic Finite-State Automata

A finite-state automata is deterministic, if for each pair of state and in-

put value there is a unique next state given by the transition function. A

finite-state automaton in which there may be several possible next states

for each pair of input value and state, machines are called nondetermin-

istic.

Definition 247. A nondeterministic finite-state automaton M = (S, I, f, s0, F)

consists of a set S of states, an input alphabet I , a transition function

f that assigns a set of states to each pair of state and input (so that

f : S × I → P (S)), a starting state s0, and a subset F of S consist-

ing of the final states.

Example 248. Find the state diagram for the nondeterministic finite-state

automaton with the state table shown in Table 1.5. The final states are s2

and s3.

Solution: The state diagram for this automaton is shown in Figure 1.10.

5.2. FINITE-STATE MACHINES WITH NO OUTPUT 223

Figure 5.13: The Nondeterministic Finite-State Automaton with State Ta-
ble 1.5.

Table 5.5

State

f

Input

0 1

s0 s0, s1 s3

s1 s0 s1, s3

s2 s0, s2

s3 s0, s1, s2 s1

Example 249. Find the state table for the nondeterministic finite-state

automaton with the state diagram shown in Figure 1.14.

Solution: The state table is given as Table 1.6.

224 UNIT 5. MODELLING COMPUTATION

Figure 5.14: A Nondeterministic Finite-State Automaton.

Table 5.6

State

f

Input

0 1

s0 s0, s2 s1

s1 s3 s4

s2 s4

s3 s3 s3

s4 s3 s3

The language recognized by a nondeterministic finite-state automaton

is the set of all strings recognized by this automaton.

Example 250. Find the language recognized by the nondeterministic finite-

state automaton shown in Figure 1.14.

Solution: Because s0 is a final state, and there is a transition from s0 to

itself when 0 is the input, the machine recognizes all strings consisting of

zero or more consecutive 0s. Furthermore, because s4 is a final state, any

5.2. FINITE-STATE MACHINES WITH NO OUTPUT 225

string that has s4 in the set of states that can be reached from s0 with this

input string is recognized. The only such strings are strings consisting

of zero or more consecutive 0s followed by 01 or 11. Because s0 and

s4 are the only final states, the language recognized by the machine is

{0n, 0n01, 0n11|n ≥ 0}.

Theorem 251. If the language L is recognized by a nondeterministic

finite-state automaton M0, then L is also recognized by a deterministic

finite-state automaton M1.

Proof. We will describe how to construct the deterministic finite-state au-

tomaton M1 that recognizes L from M0, the nondeterministic finite-state

automaton that recognizes this language. Each state in M1 will be made

up of a set of states in M0. The start symbol of M1 is {s0}, which is the

set containing the start state of M0. The input set of M1 is the same as the

input set of M0.

Given a state {si1, si2, · · · , sik} of M1, the input symbol x takes this

state to the union of the sets of next states for the elements of this set, that

is, the union of the sets f(si1, x), f(si2, x), · · · , f(sik , x). The states of

M1 are all the subsets of S, the set of states of M0, that are obtained in this

way starting with s0. (There are as many as 2n states in the deterministic

machine, where n is the number of states in the nondeterministic machine,

because all subsets may occur as states, including the empty set, although

usually far fewer states occur.) The final states of M1 are those sets that

contain a final state of M0.

Suppose that an input string is recognized by M0. Then one of the

states that can be reached from s0 using this input string is a final state

(the reader should provide an inductive proof of this). This means that in

M1, this input string leads from {s0} to a set of states of M0 that contains

226 UNIT 5. MODELLING COMPUTATION

a final state. This subset is a final state of M1, so this string is also recog-

nized by M1. Also, an input string not recognized by M0 does not lead to

any final states in M0. (The reader should provide the details that prove

this statement.) Consequently, this input string does not lead from {s0} to

a final state in M1.

Example 252. Find a deterministic finite-state automaton that recognizes

the same language as the nondeterministic finite-state automaton in Ex-

ample 249.

Solution: The deterministic automaton shown in Figure 1.15 is constructed

from the nondeterministic automaton in Example 249. The states of this

deterministic automaton are subsets of the set of all states of the nondeter-

ministic machine. The next state of a subset under an input symbol is the

subset containing the next states in the nondeterministic machine of all

elements in this subset. For instance, on input of 0, {s0} goes to {s0, s2},

because s0 has transitions to itself and to s2 in the nondeterministic ma-

chine; the set {s0, s2} goes to {s1, s4} on input of 1, because s0 goes just

to 1 and s2 goes just to s4 on input of 1 in the nondeterministic machine;

and the set {s1, s4} goes to {s3} on input of 0, because s1 and s4 both go

to just s3 on input of 0 in the deterministic machine. All subsets that are

obtained in this way are included in the deterministic finite-state machine.

Note that the empty set is one of the states of this machine, because it is

the subset containing all the next states of {s3} on input of 1. The start

state is {s0}, and the set of final states are all those that include s0 or s4.

5.2. FINITE-STATE MACHINES WITH NO OUTPUT 227

Figure 5.15: A Deterministic Automaton Equivalent to the Nondetermin-
istic Automaton

Let Us Sum Up

In this section, we discussed about

∗ Finite-state Automata.

∗ Language recognition by finite-state machines.

∗ Designing finite-state automata.

∗ Minimization of DFSA.

Check your Progress

1. Let A = {1, 00}. Then A2 =

(a) {11, 0000}

(b) {11, 10, 01, 00}

(c) {11, 100, 001, 0000}

228 UNIT 5. MODELLING COMPUTATION

(d) {11, 00, 1000}

2. Two finite-state automata are called equivalent if

(a) they recognize the same language

(b) they have the same design

(c) they are deterministic

(d) they satisfy Myhill-Nerode theorem.

5.3 Turing Machines

5.3.1 Introduction

The finite-state automata studied earlier in this chapter cannot be used as

general models of computation. They are limited in what they can do. For

example, finite-state automata are able to recognize regular sets, but are

not able to recognize many easy-to-describe sets, including {0n1n|n ≥

0}, which computers recognize using memory. We can use finite-state

automata to compute relatively simple functions such as the sum of two

numbers, but we cannot use them to compute functions that computers

can, such as the product of two numbers. To overcome these deficiencies

we can use a more powerful type of machine known as a Turing machine,

after Alan Turing, the famous mathematician and computer scientist who

invented them in the 1930s.

5.3.2 Definition of Turing Machines

Definition 253. A Turing machine T = (S, I, f, s0) consists of a finite

set S of states, an alphabet I containing the blank symbol B, a partial

5.3. TURING MACHINES 229

function f from S × I to S × I × {R,L}, and a starting state s0.

To interpret this definition in terms of a machine, consider a control

unit and a tape divided into cells, infinite in both directions, having only a

finite number of non blank symbols on it at any given time, as pictured in

Figure 1.16. The action of the Turing machine at each step of its operation

depends on the value of the partial function f for the current state and

tape symbol.

Figure 5.16: A Representation of a Turing Machine.

At each step, the control unit reads the current tape symbol x. If the

control unit is in state s and if the partial function f is defined for the pair

(s, x) with f(s, x) = (s
′
, x

′
, d), the control unit

1. enters the state s
′
,

2. writes the symbol x
′
in the current cell, erasing x, and

3. moves right one cell if d = R or moves left one cell if d = L.

We write this step as the five-tuple (s, x, s
′
, x

′
, d). If the partial function

f is undefined for the pair (s, x), then the Turing machine T will halt.

A common way to define a Turing machine is to specify a set of five-

tuples of the form (s, x, s
′
, x

′
, d). The set of states and input alphabet is

implicitly defined when such a definition is used.

230 UNIT 5. MODELLING COMPUTATION

At the beginning of its operation a Turing machine is assumed to be in

the initial state s0 and to be positioned over the leftmost nonblank symbol

on the tape. If the tape is all blank, the control head can be positioned over

any cell. We will call the positioning of the control head over the leftmost

nonblank tape symbol the initial position of the machine. Example 254

illustrates how a Turing machine works.

Example 254. What is the final tape when the Turing machine T defined

by the seven five-tuples (s0, 0, s0, 0, R), (s0, 1, s1, 1, R), (s0, B, s3, B,R),

(s1, 0, s0, 0, R), (s1, 1, s2, 0, L)(s1, B, s3, B,R), and (s2, 1, s3, 0, R) is run

on the tape shown in Figure 1.17(a)?

Solution: We start the operation with T in state s0 and with T positioned

over the leftmost non blank symbol on the tape. The first step, using the

five-tuple (s0, 0, s0, 0, R), reads the 0 in the leftmost non blank cell, stays

in state s0, writes a 0 in this cell, and moves one cell right. The second

step, using the five-tuple (s0, 1, s1, 1, R), reads the 1 in the current cell,

enters state s1, writes a 1 in this cell, and moves one cell right. The

third step, using the five-tuple (s1, 0, s0, 0, R), reads the 0 in the current

cell, enters state s0, writes a 0 in this cell, and moves one cell right.

The fourth step, using the five-tuple (s0, 1, s1, 1, R), reads the 1 in the

current cell, enters state s1, writes a 1 in this cell, and moves right one

cell. The fifth step, using the five-tuple (s1, 1, s2, 0, L), reads the 1 in the

current cell, enters state s2, writes a 0 in this cell, and moves left one

cell. The sixth step, using the five-tuple (s2, 1, s3, 0, R), reads the 1 in

the current cell, enters the state s3, writes a 0 in this cell, and moves right

one cell. Finally, in the seventh step, the machine halts because there is no

five-tuple beginning with the pair (s3, 0) in the description of the machine.

The steps are shown in Figure 1.17.

5.3. TURING MACHINES 231

Figure 5.17: The Steps Produced by Running T on the Tape.

Note that T changes the first pair of consecutive 1s on the tape to 0s

and then halts.

232 UNIT 5. MODELLING COMPUTATION

5.3.3 Using Turing Machines to Recognize Sets

Turing machines can be used to recognize sets. To do so requires that

we define the concept of a final state as follows. A final state of a Tur-

ing machine T is a state that is not the first state in any five-tuple in the

description of T using five-tuples.

We can now define what it means for a Turing machine to recognize

a string. Given a string, we write consecutive symbols in this string in

consecutive cells.

Definition 255. Let V be a subset of an alphabet I . A Turing machine

T = (S, I, f, s0) recognizes a string x in V ∗ if and only if T , starting in

the initial position when x is written on the tape, halts in a final state. T

is said to recognize a subset A of V ∗ if x is recognized by T if and only if

x belongs to A.

Example 256. Find a Turing machine that recognizes the set of bit strings

that have a 1 as their second bit, that is, the regular set (0 ∪ 1)1(0 ∪ 1)∗.

Solution: We want a Turing machine that, starting at the leftmost non

blank tape cell, moves right, and determines whether the second symbol

is a 1. If the second symbol is 1, the machine should move into a final

state. If the second symbol is not a 1, the machine should not halt or it

should halt in a nonfinal state.

To construct such a machine, we include the five-tuples (s0, 0, s1, 0, R)

and (s0, 1, s1, 1, R) to read in the first symbol and put the Turing ma-

chine in state s1. Next, we include the five-tuples (s1, 0, s2, 0, R) and

(s1, 1, s3, 1, R) to read in the second symbol and either move to state s2 if

this symbol is a 0, or to state s3 if this symbol is a 1. We do not want to

recognize strings that have a 0 as their second bit, so s2 should not be a

5.3. TURING MACHINES 233

final state. We want s3 to be a final state. So, we can include the five-tuple

(s2, 0, s2, 0, R). Because we do not want to recognize the empty string or

a string with one bit, we also include the five-tuples (s0, B, s2, 0, R) and

(s1, B, s2, 0, R).

The Turing machine T consisting of the seven five-tuples listed here

will terminate in the final state s3 if and only if the bit string has at least

two bits and the second bit of the input string is a 1. If the bit string

contains fewer than two bits or if the second bit is not a 1, the machine

will terminate in the nonfinal state s2.

Example 257. Find a Turing machine that recognizes the set {0n1n|n ≥

1}.

Solution: To build such a machine, we will use an auxiliary tape symbol

M as a marker. We have V = {0, 1} and I = {0, 1,M}. We wish to

recognize only a subset of strings in V ∗. We will have one final state, s6.

The Turing machine successively replaces a 0 at the leftmost position of

the string with an M and a 1 at the rightmost position of the string with an

M, sweeping back and forth, terminating in a final state if and only if the

string consists of a block of 0s followed by a block of the same number of

1s.

Although this is easy to describe and is easily carried out by a Tur-

ing machine, the machine we need to use is somewhat complicated. We

use the marker M to keep track of the leftmost and rightmost symbols

we have already examined. The five-tuples we use are (s0, 0, s1,M,R),

(s1, 0, s1, 0, R), (s1, 1, s1, 1, R), (s1,M, s2,M, L), (s1, B, s2, B, L), (s2, 1, s3,M, L),

(s3, 1, s3, 1, L), (s3, 0, s4, 0, L), (s3,M, s5,M,R), (s4, 0, s4, 0, L), (s4,M, s0,M,R),

and (s5,M, s6,M,R). For example, the string 000111 would successively

become M00111, M0011M, MM011M, MM01MM, MMM1MM, MMM-

234 UNIT 5. MODELLING COMPUTATION

MMM as the machine operates until it halts. Only the changes are shown,

as most steps leave the string unaltered.

We leave it to the reader to explain the actions of this Turing machine

and to explain why it recognizes the set {0n1n|n ≥ 1}.

5.3.4 Computing Functions with Turing Machines

Example 258. Construct a Turing machine for adding two nonnegative

integers.

Solution: We need to build a Turing machine T that computes the function

f(n1, n2) = n1+n2. The pair (n1, n2) is represented by a string of n1+1

1s followed by an asterisk followed by n2 + 1 1s. The machine T should

take this as input and produce as output a tape with n1 + n2 + 1 1s. One

way to do this is as follows. The machine starts at the leftmost 1 of the

input string, and carries out steps to erase this 1, halting if n1 = 0 so that

there are no more 1s before the asterisk, replaces the asterisk with the

leftmost remaining 1, and then halts. We can use these five-tuples to do

this: (s0, 1, s1, B,R), (s1, ∗, s3, B,R), (s1, 1, s2, B,R), (s2, 1, s2, 1, R),

and (s2, ∗, s3, 1, R).

5.3.5 Computational Complexity, Computability, and Decidabil-

ity

Definition 259. A decision problem asks whether statements from a par-

ticular class of statements are true. Decision problems are also known as

yes-or-no problems.

Definition 260. The halting problem is the decision problem that asks

whether a Turing machine T eventually halts when given an input string

5.3. TURING MACHINES 235

x.

Theorem 261. The halting problem is an unsolvable decision problem.

That is, no Turing machine exists that, when given an encoding of a Tur-

ing machine T and its input string x as input, can determine whether T

eventually halts when started with x written on its tape.

Other examples of unsolvable problems include:

(i) the problem of determining whether two context-free grammars gen-

erate the same set of strings;

(ii) the problem of determining whether a given set of tiles can be used

with repetition allowed to cover the entire plane without overlap;

and

(iii) Hilberts Tenth Problem, which asks whether there are integer solu-

tions to a given polynomial equation with integer coefficients.

COMPUTABILITY A function that can be computed by a Turing ma-

chine is called computable and a function that cannot be computed by a

Turing machine is called uncomputable.

Definition 262. A decision problem is in P , the class of polynomial-time

problems, if it can be solved by a deterministic Turing machine in poly-

nomial time in terms of the size of its input. That is, a decision problem is

in P if there is a deterministic Turing machine T that solves the decision

problem and a polynomial p(n) such that for all integers n, T halts in a

final state after no more than p(n) transitions whenever the input to T is a

string of length n. A decision problem is in NP , the class of nondetermin-

istic polynomial-time problems, if it can be solved by a nondeterministic

Turing machine in polynomial time in terms of the size of its input. That

236 UNIT 5. MODELLING COMPUTATION

is, a decision problem is in NP if there is a nondeterministic Turing ma-

chine T that solves the problem and a polynomial p(n) such that for all

integers n, T halts for every choice of transitions after no more than p(n)

transitions whenever the input to T is a string of length n.

Problems in P are called tractable, whereas problems not in P are

called intractable.

Let Us Sum Up

In this section, we discussed about

∗ Definition of Turing Machine.

∗ Using Turing machines to recognize sets.

∗ Computing functions with Turing machines.

∗ Computational complexity.

Check your Progress

1. A function is computable if it is

(a) a busy bearer function

(b) solvable by Boolean algebra

(c) computable by a Turing machine

(d) a decision problem

2. Problems not in p are called

(a) intractable

5.3. TURING MACHINES 237

(b) tractable

(c) polynomial-time problems

(d) decision problems

Summary

In this unit, we discussed about

∗ Finite-state machines with output.

∗ Types of finite-state machines.

∗ Finite-state automata.

∗ Myhill-Nerode Theorem.

∗ Minimization of DFSA.

∗ Non-deterministic finite-state automata.

∗ Turing machines.

∗ Computing functions with Turing machine.

∗ Computational complexity, computability and Decidability.

Glossary

AB (concatenation of A and B: the set of all strings formed by concate-

nating a string in A and a string in B in that order.

238 UNIT 5. MODELLING COMPUTATION

A∗ (Kleene closure of A): the set of all strings made up by concatenating

arbitrarily many strings from A.

deterministic finite-state automaton (S, I, f, s0, F): a five-tuple contain-

ing a set S of states, an input letter I , a transition function f that assigns

a next state to every pair of a state and an input, a starting state s0, and a

set of final states F .

non deterministic finite-state automaton (S, I, f, s0, F): a five-tuple

containing a set S of states, an input letter I , a transition function f that

assigns a set of possible next states to every pair of state and an input, a

starting state s0, and a set of final states F .

language recognized by an automaton: the set of input strings that take

the start state to a final state of the automaton.

regular expression: an expression defined recursively by specifying that

∅, λ, and x, for all x in the input alphabet, are regular expressions, and

that (AB), (A ∪ B), and A∗ re regular expressions when A and B are

regular expressions.

regular set: a set defined by a regular expression.

decision problem: a problem that asks whether statements from a partic-

ular class of statements are true.

solvable problem: a problem with the property that there is an effective

5.3. TURING MACHINES 239

algorithm that can solve all instance of the problem.

unsolvable problem: a problem with the property that no effective algo-

rithm exists that can solve all instance of the problem.

computable function: a function whose values can be computed using a

Turing machine.

uncomputable function: a function whose values cannot be computed

using a Turing machine.

Self Assessment Questions

1. What is a finite-state machine?

2. Construct a deterministic finite-state automaton that recognizes the

set of bit strings that start with 1 and end with 1.

3. Find the Kleene closure of the set {11, 0}.

4. What does it mean for a string to be recognized by a finite-state

automaton?

5. Show that given a nondeterministic finite-state automaton, there is

a deterministic finite-state automaton that recognizes the same lan-

guage.

240 UNIT 5. MODELLING COMPUTATION

Exercises

1. Construct a finite-state machine with output that produces an output

of 1 if the bit string read so far as input contains four or more 1s.

Then construct a deterministic finite-state automaton that recognizes

this set.

2. Construct finite-state automata that recognize the sets 0∗(10)∗.

3. Find regular expressions that represent the set of all strings of 0s and

1s, made up of blocks of even numbers of 1s interspersed with odd

numbers of 0s.

4. Show that if A is regular set, then so is Ā.

5. Find finite-state automata that recognize the set of all strings that

start with no more than three consecutive 0s and contain at least

two consecutive 1s.

Answers to Check your Progress

Section 5.1: 1)b 2)c

Section 5.2: 1)c 2)a

Section 5.3: 1)c 2)a

Reference:

1. Kenneth H. Rosen, “Discrete Mathematics and its Applications”,

7th Edition, WCB/ McGraw Hill Publications, New Delhi, 2011.

5.3. TURING MACHINES 241

Suggested Readings:

1. Edward A. Bender and S. Gill Williamson, “A Short Course in Dis-

crete Mathematics”, Dover Publications, 2006.

2. M.O. Albertson and J.P. Hutchinson, “Discrete Mathematics with

Algorithms”, John Wiley & Sons, 2008.

3. Rajendra Akerkar and Rupali Akarkar, “Discrete Mathematics”, Pear-

son Education Pvt. Ltd, Singapore, 2004.

4. J. P. Trembley and R. Manohar, “Discrete Mathematical Structures”,

Tata McGraw Hill, New Delhi,1997.

5. Martin Aigner, “A Course in Enumeration”, Springer-Verlag, Hei-

delberg, 2007.

6. J.H. Van Lint and R.M. Wilson, “A Course in Combinatorics”, 2nd

Edition, Cambridge University Press, Cambridge, 2001.

